Геометрические вероятности.
Чтобы преодолеть недостаток классического определения вероятности, связанный с его неприменимостью к испытаниям с бесконечным числом исходов, вводят понятие геометрической вероятности – вероятности попадания точки в некоторую область ( отрезок, часть плоскости и т.д.).
В подобных случаях пространство элементарных исходов может быть представлено областью , а под событием можно понимать исходы, входящие в некоторую область , принадлежащую области .
Пусть на область наугад бросается “точка”. Какова вероятность того, что эта точка попадет в область , являющуюся частью области ?
Пусть отрезок длины , составляет часть отрезка длина которого . На отрезок наудачу поставлена точка. Предполагается, что
поставленная точка может оказаться в любой точке отрезка ;
вероятность попадания точки на отрезок пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка .
Тогда вероятность попадания точки на отрезок определяется равенством .
Пусть плоская фигура с площадью составляет часть плоской фигуры , площадь которой . На фигуру наудачу брошена точка. Предполагается, что:
брошенная точка может оказаться в любой точке фигуры ;
вероятность попадания брошенной точки на фигуру пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно фигуры , ни от формы .
В этих предположениях вероятность попадания точки на фигуру определяется равенством .
Аналогично вводится понятие геометрической вероятности при бросании точки в пространственную область объема , содержащую область объема
:
В общем случае понятие геометрической вероятности вводится следующим образом. Обозначим меру области (длину, площадь, объем и т.д.) через , а меру области – через . Тогда вероятность попадания в область точки, брошенной в область , определяется формулой:
.
Пример: в течение суток к причалу могут подойти 2 парохода. Время прихода обоих пароходов независимо и равновозможно в течение суток. Определить вероятность того, что одному из пароходов придется ждать, если время разгрузки одного ид них равно 1 часу, а другого – 2 часам.
- Лекция 1. Предмет теории вероятностей и математической статистики и их роль в экономике и менеджменте
- Лекция 2. Аксиоматика теории вероятности Понятие случайного эксперимента.
- Пространство элементарных событий.
- Совместные и несовместные события.
- Операции над событиями (сумма, разность, произведение).
- Свойства операций над событиями.
- Алгебра и сигма-алгебра событий.
- Лекция 3. Методы определения вероятностей событий
- Классическое определение вероятности события. Случаи равновероятных исходов.
- Статистическое определение вероятности события. Случаи неравновероятных исходов.
- Геометрические вероятности.
- Аксиоматическое построение теории вероятностей.
- Вероятностное пространство
- Лекция 4. Основные теоремы теории вероятностей. Формула полной вероятности и формула Байеса Полная группа событий.
- Условная вероятность.
- Формула умножения вероятностей.
- Формула сложения вероятностей.
- Независимость событий.
- Формула полной вероятности.
- Формула Байеса
- Основные понятия комбинаторики.
- Правила суммы и произведения.
- Лекция 5. Схема независимых испытаний Бернулли
- Случай непостоянной вероятности появления события в опытах
- Наивероятнейшее число наступления событий в схеме Бернулли.
- Предельные теоремы для схемы Бернулли.
- Теорема Пуассона.
- Понятие потока событий.
- Локальная теорема Муавра –Лапласа.
- Интегральная (глобальная) теорема Муавра – Лапласа.
- Лекция 6. Виды случайных величин и расчет вероятностей событий с использованием функций и плотностей распределения
- Закон распределения дискретной случайной величины.
- Функция распределения случайной величины и ее свойства.
- Свойства функции распределения
- Плотность распределения вероятностей.
- Лекция 7. Основные параметры распределений одномерных случайных величин.
- Математическое ожидание случайной величины
- Свойства математического ожидания:
- Дисперсия случайной величины и ее свойства.
- Среднее квадратическое отклонение.
- Лекция 8. Основные законы распределений случайных величин
- Биномиальное распределение, его математическое ожидание и дисперсия.
- Распределение Пуассона.
- Геометрическое распределение
- Гипергеометрическое распределение (урновая схема)
- Равномерное распределение.
- Показательное распределение.
- Лекция 9. Нормальное распределение и его свойства
- Свойства функции Гаусса.
- Вероятность попадания нормальной случайной величины в заданный интервал.
- Функция Лапласа и ее свойства.
- О тклонение нормальной случайной величины от ее математического ожидания. Правило «трех сигм».
- Лекция 10. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двух случайных величин
- Свойства совместной функции распределения двух случайных величин
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Независимые случайные величины
- Для независимых случайных величин справедливы соотношения
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Лекция 11. Предельные теоремы теории вероятностей.
- Неравенство Чебышева
- Теорема Чебышева.
- Центральная предельная теорема.
- Лекция 12. Выборочный метод анализа свойств генеральной совокупности.
- Выборочный метод и его основные понятия. Случайная выборка и ее объем
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин.
- Полигон и гистограмма
- Лекция 13. Понятие о статистических оценках случайных величин Эмпирическая функция распределения
- Важнейшие свойства статистических оценок
- Надежность и доверительный интервал.
- Лекция 14. Доверительные интервалы для математического ожидания и дисперсии Доверительный интервал для математического ожидания нормального распределения при известной дисперсии.
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- . Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Лекция 15. Проверка статистических гипотез.
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки.
- Критерий согласия Пирсона о виде распределения.
- Лекция 16. (уир) Понятие о регрессионном анализе
- Понятие о регрессионном анализе
- Выборочные уравнения регрессии.
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель.
- Обратная модель.
- Степенная модель.
- Показательная модель.
- Лекция 17 (уир). Понятие о корреляционном анализе.
- А. Парная корреляция
- Б. Множественная корреляция
- Лекция 18 (уир). Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода.
- Равенство Маркова
- Лекция 19 (уир). Цепи Маркова с непрерывным временем.
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Лекция 20 (уир). Системы массового обслуживания.
- Расчет характеристик систем массового обслуживания Одноканальные модели а. Одноканальная модель с отказами
- Б. Одноканальная модель с ожиданием
- Многоканальные модели