Лекция 15. Проверка статистических гипотез.
На прошлой лекции мы рассматривали задачу построения доверительных интервалов для неизвестных параметров генеральной совокупности. Сегодня мы продолжим изучение основных задач математической статистики и перейдем к вопросу проверки статистических гипотез.
Проверка статистических гипотез представляет собой важнейший этап процесса принятия решения в управленческой деятельности, позволяя проводить подготовительный этап предстоящих действий с учетом реальных характеристик процесса производства, контроля качества продукции, коммерческой деятельности, и т.п.
Как известно, закон распределения определяет количественные характеристики генеральной совокупности.
Если закон распределения неизвестен, но есть основания предположить, что он имеет определенный вид (например, А), то выдвигают гипотезу: генеральная совокупность распределена по закону А. В этой гипотезе речь идет о виде предполагаемого распределения.
Часто закон распределения известен, но неизвестны его параметры. Если есть основания предположить, что неизвестный параметр равен определенному значению , то может выдвигаться гипотеза . В этой гипотезе речь идет о предполагаемой величине параметра известного распределения.
Возможны и другие гипотезы: о равенстве параметров двух или нескольких распределений, о независимости выборок и т. д.
Приведем несколько задач, которые могут быть решены с помощью проверки статистических гипотез.
1. Используется два метода измерения одной и той же величины. Первый метод дает оценки этой величины, второй - . Требуется определить, обеспечивают ли оба метода одинаковую точность измерений.
2. Контроль точности работы некоторой производственной системы. Получаемые характеристики выпускаемой продукции характеризуются некоторым разбросом (дисперсией). Обычно величина этого разброса не должна превышать некоторого заранее заданного уровня. Требуется определить, обеспечивает ли система (например, линия сборки или отдельный станок) заданную точность.
Итак, статистической называют гипотезу о виде неизвестного распределения или о параметрах известных распределений. Примеры статистических гипотез: генеральная совокупность распределена по закону Пуассона; дисперсии двух нормальных распределений равны между собой.
Наряду с выдвинутой гипотезой всегда рассматривают и противоречащую ей гипотезу. Если выдвинутая гипотеза будет отвергнута, то принимается противоречащая гипотеза.
Нулевой (основной) называют выдвинутую гипотезу .
Альтернативной (конкурирующей) называют гипотезу , которая противоречит нулевой. Например, если нулевая гипотеза состоит в предположении, что математическое ожидание нормального распределения равно 5, то альтернативная гипотеза, например, может состоять в предположении, что . Кратко это записывают так: .
Простой называют гипотезу, содержащую только одно предположение. Например, если - параметр показательного распределения, то гипотеза - простая. Сложной называют гипотезу, состоящую из конечного или бесконечного числа простых гипотез. Например, сложная гипотеза состоит из бесконечного множества простых гипотез вида , где - любое число, большее 3.
Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки. Так как проверку производят статистическими методами, то ее называют статистической. В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т.е. могут быть допущены ошибки двух родов.
Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза. Ошибка второго рода состоит в том, что будет принята неправильная гипотеза. Следует отметить, что последствия ошибок могут оказаться различными. Если отвергнуто правильное решение "продолжать строительство жилого дома", то эта ошибка первого рода повлечет материальный ущерб; если же принято неправильное решение "продолжать строительство" несмотря на опасность обвала дома, то эта ошибка второго рода может привести к многочисленным жертвам. Иногда, наоборот, ошибка первого рода влечет более тяжелые последствия.
Естественно, правильное решение может быть принято также в двух случаях, когда принимается правильная гипотеза или отвергается неверная гипотеза.
Вероятность совершения ошибки первого рода называют уровнем значимости и обозначают . Чаще всего уровень значимости принимают равным 0,05 или 0,01. Если, например, принят уровень значимости 0,05, то это означает, что в пяти случаях из ста имеется риск допустить ошибку первого рода (отвергнуть правильную гипотезу).
- Лекция 1. Предмет теории вероятностей и математической статистики и их роль в экономике и менеджменте
- Лекция 2. Аксиоматика теории вероятности Понятие случайного эксперимента.
- Пространство элементарных событий.
- Совместные и несовместные события.
- Операции над событиями (сумма, разность, произведение).
- Свойства операций над событиями.
- Алгебра и сигма-алгебра событий.
- Лекция 3. Методы определения вероятностей событий
- Классическое определение вероятности события. Случаи равновероятных исходов.
- Статистическое определение вероятности события. Случаи неравновероятных исходов.
- Геометрические вероятности.
- Аксиоматическое построение теории вероятностей.
- Вероятностное пространство
- Лекция 4. Основные теоремы теории вероятностей. Формула полной вероятности и формула Байеса Полная группа событий.
- Условная вероятность.
- Формула умножения вероятностей.
- Формула сложения вероятностей.
- Независимость событий.
- Формула полной вероятности.
- Формула Байеса
- Основные понятия комбинаторики.
- Правила суммы и произведения.
- Лекция 5. Схема независимых испытаний Бернулли
- Случай непостоянной вероятности появления события в опытах
- Наивероятнейшее число наступления событий в схеме Бернулли.
- Предельные теоремы для схемы Бернулли.
- Теорема Пуассона.
- Понятие потока событий.
- Локальная теорема Муавра –Лапласа.
- Интегральная (глобальная) теорема Муавра – Лапласа.
- Лекция 6. Виды случайных величин и расчет вероятностей событий с использованием функций и плотностей распределения
- Закон распределения дискретной случайной величины.
- Функция распределения случайной величины и ее свойства.
- Свойства функции распределения
- Плотность распределения вероятностей.
- Лекция 7. Основные параметры распределений одномерных случайных величин.
- Математическое ожидание случайной величины
- Свойства математического ожидания:
- Дисперсия случайной величины и ее свойства.
- Среднее квадратическое отклонение.
- Лекция 8. Основные законы распределений случайных величин
- Биномиальное распределение, его математическое ожидание и дисперсия.
- Распределение Пуассона.
- Геометрическое распределение
- Гипергеометрическое распределение (урновая схема)
- Равномерное распределение.
- Показательное распределение.
- Лекция 9. Нормальное распределение и его свойства
- Свойства функции Гаусса.
- Вероятность попадания нормальной случайной величины в заданный интервал.
- Функция Лапласа и ее свойства.
- О тклонение нормальной случайной величины от ее математического ожидания. Правило «трех сигм».
- Лекция 10. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двух случайных величин
- Свойства совместной функции распределения двух случайных величин
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Независимые случайные величины
- Для независимых случайных величин справедливы соотношения
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Лекция 11. Предельные теоремы теории вероятностей.
- Неравенство Чебышева
- Теорема Чебышева.
- Центральная предельная теорема.
- Лекция 12. Выборочный метод анализа свойств генеральной совокупности.
- Выборочный метод и его основные понятия. Случайная выборка и ее объем
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин.
- Полигон и гистограмма
- Лекция 13. Понятие о статистических оценках случайных величин Эмпирическая функция распределения
- Важнейшие свойства статистических оценок
- Надежность и доверительный интервал.
- Лекция 14. Доверительные интервалы для математического ожидания и дисперсии Доверительный интервал для математического ожидания нормального распределения при известной дисперсии.
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- . Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Лекция 15. Проверка статистических гипотез.
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки.
- Критерий согласия Пирсона о виде распределения.
- Лекция 16. (уир) Понятие о регрессионном анализе
- Понятие о регрессионном анализе
- Выборочные уравнения регрессии.
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель.
- Обратная модель.
- Степенная модель.
- Показательная модель.
- Лекция 17 (уир). Понятие о корреляционном анализе.
- А. Парная корреляция
- Б. Множественная корреляция
- Лекция 18 (уир). Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода.
- Равенство Маркова
- Лекция 19 (уир). Цепи Маркова с непрерывным временем.
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Лекция 20 (уир). Системы массового обслуживания.
- Расчет характеристик систем массового обслуживания Одноканальные модели а. Одноканальная модель с отказами
- Б. Одноканальная модель с ожиданием
- Многоканальные модели