Способы отбора
На практике применяются различные способы отбора, которые можно подразделить на два вида:
Отбор, не требующий расчленения генеральной совокупности на части. Сюда относятся а) простой случайный бесповторный отбор и б) простой случайный повторный отбор.
Отбор, при котором генеральная совокупность разбивается на части. Сюда относятся а) типический отбор, б) механический отбор и в) серийный отбор.
Простым случайным называют отбор, при котором объекты извлекаются по одному из генеральной совокупности. Осуществить такой отбор для генеральной совокупности из N объектов можно, например, посредством записи на карточках номеров от 1 до N, последующем перемешиванием карточек и выниманием их наугад. При этом обследованию подлежат объекты, имеющие номера, совпадающие с номерами карточек. Если карточки возвращаются в пачку, то имеем простую случайную повторную выборку, в противном случае – простую бесповторную. При большом объеме генеральной совокупности более рациональным является использование таблиц случайных чисел. Например, чтобы выбрать 50 объектов из пронумерованной генеральной совокупности, открывают любую страницу таблицы случайных чисел и выписывают 50 чисел подряд; в выборку попадают те объекты, номера которых совпадают с выписанными случайными числами. Если случайное число таблицы превосходит число N, такое число пропускают. При проведении бесповторной выборки пропускают также случайные числа, уже встречавшиеся раньше.
Типическим называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее “типической” части. Например, если детали изготовлены на нескольких станках, то отбор производят из продукции каждого станка в отдельности.
Механическим называют отбор, при котором генеральная совокупность механически делится на столько групп, сколько объектов должно войти в выборку, а из каждой группы выбирается один объект. Например, если нужно отобрать 20% изготовленных станком деталей, то отбирают каждую пятую деталь.
Серийным называют отбор, при котором объекты отбирают из генеральной совокупности не по одному, а “сериями”, которые подвергаются сплошному обследованию. Например, если изделия производятся большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков. Этим видом отбора пользуются тогда, когда обследуемый признак колеблется в различных сериях незначительно.
На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы. Например, разбивают генеральную совокупность на серии одинакового объема, затем простым случайным отбором выбирают несколько серий и, наконец, из каждой серии простым случайным отбором извлекают отдельные объекты.
- Лекция 1. Предмет теории вероятностей и математической статистики и их роль в экономике и менеджменте
- Лекция 2. Аксиоматика теории вероятности Понятие случайного эксперимента.
- Пространство элементарных событий.
- Совместные и несовместные события.
- Операции над событиями (сумма, разность, произведение).
- Свойства операций над событиями.
- Алгебра и сигма-алгебра событий.
- Лекция 3. Методы определения вероятностей событий
- Классическое определение вероятности события. Случаи равновероятных исходов.
- Статистическое определение вероятности события. Случаи неравновероятных исходов.
- Геометрические вероятности.
- Аксиоматическое построение теории вероятностей.
- Вероятностное пространство
- Лекция 4. Основные теоремы теории вероятностей. Формула полной вероятности и формула Байеса Полная группа событий.
- Условная вероятность.
- Формула умножения вероятностей.
- Формула сложения вероятностей.
- Независимость событий.
- Формула полной вероятности.
- Формула Байеса
- Основные понятия комбинаторики.
- Правила суммы и произведения.
- Лекция 5. Схема независимых испытаний Бернулли
- Случай непостоянной вероятности появления события в опытах
- Наивероятнейшее число наступления событий в схеме Бернулли.
- Предельные теоремы для схемы Бернулли.
- Теорема Пуассона.
- Понятие потока событий.
- Локальная теорема Муавра –Лапласа.
- Интегральная (глобальная) теорема Муавра – Лапласа.
- Лекция 6. Виды случайных величин и расчет вероятностей событий с использованием функций и плотностей распределения
- Закон распределения дискретной случайной величины.
- Функция распределения случайной величины и ее свойства.
- Свойства функции распределения
- Плотность распределения вероятностей.
- Лекция 7. Основные параметры распределений одномерных случайных величин.
- Математическое ожидание случайной величины
- Свойства математического ожидания:
- Дисперсия случайной величины и ее свойства.
- Среднее квадратическое отклонение.
- Лекция 8. Основные законы распределений случайных величин
- Биномиальное распределение, его математическое ожидание и дисперсия.
- Распределение Пуассона.
- Геометрическое распределение
- Гипергеометрическое распределение (урновая схема)
- Равномерное распределение.
- Показательное распределение.
- Лекция 9. Нормальное распределение и его свойства
- Свойства функции Гаусса.
- Вероятность попадания нормальной случайной величины в заданный интервал.
- Функция Лапласа и ее свойства.
- О тклонение нормальной случайной величины от ее математического ожидания. Правило «трех сигм».
- Лекция 10. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двух случайных величин
- Свойства совместной функции распределения двух случайных величин
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Независимые случайные величины
- Для независимых случайных величин справедливы соотношения
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Лекция 11. Предельные теоремы теории вероятностей.
- Неравенство Чебышева
- Теорема Чебышева.
- Центральная предельная теорема.
- Лекция 12. Выборочный метод анализа свойств генеральной совокупности.
- Выборочный метод и его основные понятия. Случайная выборка и ее объем
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин.
- Полигон и гистограмма
- Лекция 13. Понятие о статистических оценках случайных величин Эмпирическая функция распределения
- Важнейшие свойства статистических оценок
- Надежность и доверительный интервал.
- Лекция 14. Доверительные интервалы для математического ожидания и дисперсии Доверительный интервал для математического ожидания нормального распределения при известной дисперсии.
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- . Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Лекция 15. Проверка статистических гипотез.
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки.
- Критерий согласия Пирсона о виде распределения.
- Лекция 16. (уир) Понятие о регрессионном анализе
- Понятие о регрессионном анализе
- Выборочные уравнения регрессии.
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель.
- Обратная модель.
- Степенная модель.
- Показательная модель.
- Лекция 17 (уир). Понятие о корреляционном анализе.
- А. Парная корреляция
- Б. Множественная корреляция
- Лекция 18 (уир). Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода.
- Равенство Маркова
- Лекция 19 (уир). Цепи Маркова с непрерывным временем.
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Лекция 20 (уир). Системы массового обслуживания.
- Расчет характеристик систем массового обслуживания Одноканальные модели а. Одноканальная модель с отказами
- Б. Одноканальная модель с ожиданием
- Многоканальные модели