logo
Конспект лекций по ТВМС

Интегральная (глобальная) теорема Муавра – Лапласа.

Интегральная теорема Муавра-Лапласа содержит приближенную формулу для вероятности того, что событие появится не менее раз и не более раз.

Теорема. Вероятность того, что событие появится в испытаниях от до раз, приближенно равна определенному интегралу

,

где ;

.

Доказательство. На основании теоремы сложения вероятностей несовместных событий

.

Или, используя локальную теорему Лапласа,

,

Введем обозначение ,

И запишем в виде .

Очевидно, при величина и последняя сумма стремится к определенному интегралу:

,

что и требовалось доказать.

Введем стандартный интеграл Лапласа (функцию Лапласа):

,

который, очевидно, является первообразной функции Гаусса

.

Тогда на основании формулы Ньютона – Лейбница можно записать

.

Значения функций и обычно находятся из таблиц, причем таблицы обычно даны лишь для неотрицательных значений , поскольку ­– четная функция, а – нечетная.