logo
Конспект лекций по ТВМС

Центральная предельная теорема.

Причину чрезвычайно широкой распространенности случайных величин, описывающихся нормальным распределением, объясняет центральная предельная теорема, доказанная А.М. Ляпуновым.

Центральная предельная теорема: Если случайная величина X представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то X имеет распределение, близкое к нормальному распределению.

Пусть - последовательность независимых случайных величин, каждая из которых имеет конечные математическое ожидание и дисперсию

.

Введем обозначения для суммы случайных величин, суммы их математических ожиданий и суммы их дисперсий

.

Рассмотрим функцию , которая, как легко показать, имеет математическое ожидание и дисперсию, равные нулю и единице соответственно (нормированная сумма).

Действительно,

,

Обозначим функцию распределения нормированной суммы

.

Говорят, что к последовательности применима центральная предельная теорема, если при любом x функция распределения нормированной суммы при стремится к нормальной функции распределения:

В частности, если все случайные величины одинаково распределены, то к этой последовательности применима центральная предельная теорема, при условии, что дисперсии всех величин конечны и отличны от нуля. В частном случае, когда математические ожидания и дисперсии всех одинаковы ( ), в последнем равенстве нужно положить .

Центральная предельная теорема находит чрезвычайно широкое применение в математической статистике, в частности, при обосновании выбора закона распределения генеральной совокупности.

В заключение отметим, что использование теоремы Чебышева и центральной предельной теоремы позволяет не только осуществлять научные прогнозы в области случайных явлений, но и оценивать точность этих прогнозов.