Функция распределения случайной величины и ее свойства.
Как уже отмечалось, дискретная случайная величина может быть задана перечнем всех ее возможных значений и их вероятностей. Такой способ неприменим для непрерывных случайных величин, так как невозможно составить перечень всех возможных значений, заполняющих интервал (a,b). В связи с этим вводится понятие функции распределения вероятностей случайной величины, пригодное как для дискретной, так и для непрерывной случайной величины.
Пусть x – действительное число. Вероятность события, состоящего в том, что X примет значение, меньшее x, т.е. вероятность события , обозначим через . Разумеется, если x изменяется, то, вообще говоря, изменяется и , т.е. есть функция x.
Функцией распределения называют функцию , определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее x:
Геометрически это равенство можно истолковать так: есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее x.
Рассмотрим по-отдельности случаи дискретной и непрерывной случайной величин.
1. Дискретная случайная величина. Рассмотрим функцию распределения дискретной случайной величины , принимающей значения .
Если , то , так как в этом случае событие является невозможным.
Если , то событие наступит тогда и только тогда, когда наступит событие , поэтому .
Если , то событие равно сумме событий и и
.
Аналогично, если , то .
Таким образом, функция распределения случайной дискретной величины равна , где , и суммирование производится по тем , для которых .
Таким образом, в точках функция распределения испытывает скачки.
2. Непрерывная случайная величина. В отличие от случая дискретной случайной величины в данном случае пробегает все непрерывное множество значений, а сама функция возрастает монотонно.
Если вероятность события равна , а вероятность события равна , то вероятность того, что случайная величина заключена между и равна разности соответствующих значений функции распределения: .
Вероятность того, что непрерывная случайная величина X примет одно определенное значение, равна нулю. Имеет смысл рассматривать лишь вероятность попадания ее в некоторый интервал, пусть даже и сколь угодно малый.
График функции распределения для дискретной случайной величины представляет собой ступенчатую разрывную функцию, а непрерывной –монотонно возрастающую непрерывную функцию.
Пример. Пусть среднедушевой доход в у.е. описывается функцией распределения
где . Какова вероятность того, что в случайно выбранной семье среднедушевой доход меньше 200 у.е.? Вероятность того, что среднедушевой доход лежит в пределах от 50 до 150 у.е.? Ответ: а) , б) 0,534.
- Лекция 1. Предмет теории вероятностей и математической статистики и их роль в экономике и менеджменте
- Лекция 2. Аксиоматика теории вероятности Понятие случайного эксперимента.
- Пространство элементарных событий.
- Совместные и несовместные события.
- Операции над событиями (сумма, разность, произведение).
- Свойства операций над событиями.
- Алгебра и сигма-алгебра событий.
- Лекция 3. Методы определения вероятностей событий
- Классическое определение вероятности события. Случаи равновероятных исходов.
- Статистическое определение вероятности события. Случаи неравновероятных исходов.
- Геометрические вероятности.
- Аксиоматическое построение теории вероятностей.
- Вероятностное пространство
- Лекция 4. Основные теоремы теории вероятностей. Формула полной вероятности и формула Байеса Полная группа событий.
- Условная вероятность.
- Формула умножения вероятностей.
- Формула сложения вероятностей.
- Независимость событий.
- Формула полной вероятности.
- Формула Байеса
- Основные понятия комбинаторики.
- Правила суммы и произведения.
- Лекция 5. Схема независимых испытаний Бернулли
- Случай непостоянной вероятности появления события в опытах
- Наивероятнейшее число наступления событий в схеме Бернулли.
- Предельные теоремы для схемы Бернулли.
- Теорема Пуассона.
- Понятие потока событий.
- Локальная теорема Муавра –Лапласа.
- Интегральная (глобальная) теорема Муавра – Лапласа.
- Лекция 6. Виды случайных величин и расчет вероятностей событий с использованием функций и плотностей распределения
- Закон распределения дискретной случайной величины.
- Функция распределения случайной величины и ее свойства.
- Свойства функции распределения
- Плотность распределения вероятностей.
- Лекция 7. Основные параметры распределений одномерных случайных величин.
- Математическое ожидание случайной величины
- Свойства математического ожидания:
- Дисперсия случайной величины и ее свойства.
- Среднее квадратическое отклонение.
- Лекция 8. Основные законы распределений случайных величин
- Биномиальное распределение, его математическое ожидание и дисперсия.
- Распределение Пуассона.
- Геометрическое распределение
- Гипергеометрическое распределение (урновая схема)
- Равномерное распределение.
- Показательное распределение.
- Лекция 9. Нормальное распределение и его свойства
- Свойства функции Гаусса.
- Вероятность попадания нормальной случайной величины в заданный интервал.
- Функция Лапласа и ее свойства.
- О тклонение нормальной случайной величины от ее математического ожидания. Правило «трех сигм».
- Лекция 10. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двух случайных величин
- Свойства совместной функции распределения двух случайных величин
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Независимые случайные величины
- Для независимых случайных величин справедливы соотношения
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Лекция 11. Предельные теоремы теории вероятностей.
- Неравенство Чебышева
- Теорема Чебышева.
- Центральная предельная теорема.
- Лекция 12. Выборочный метод анализа свойств генеральной совокупности.
- Выборочный метод и его основные понятия. Случайная выборка и ее объем
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин.
- Полигон и гистограмма
- Лекция 13. Понятие о статистических оценках случайных величин Эмпирическая функция распределения
- Важнейшие свойства статистических оценок
- Надежность и доверительный интервал.
- Лекция 14. Доверительные интервалы для математического ожидания и дисперсии Доверительный интервал для математического ожидания нормального распределения при известной дисперсии.
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- . Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Лекция 15. Проверка статистических гипотез.
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки.
- Критерий согласия Пирсона о виде распределения.
- Лекция 16. (уир) Понятие о регрессионном анализе
- Понятие о регрессионном анализе
- Выборочные уравнения регрессии.
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель.
- Обратная модель.
- Степенная модель.
- Показательная модель.
- Лекция 17 (уир). Понятие о корреляционном анализе.
- А. Парная корреляция
- Б. Множественная корреляция
- Лекция 18 (уир). Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода.
- Равенство Маркова
- Лекция 19 (уир). Цепи Маркова с непрерывным временем.
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Лекция 20 (уир). Системы массового обслуживания.
- Расчет характеристик систем массового обслуживания Одноканальные модели а. Одноканальная модель с отказами
- Б. Одноканальная модель с ожиданием
- Многоканальные модели