logo
Конспект лекций по ТВМС

Функция распределения случайной величины и ее свойства.

Как уже отмечалось, дискретная случайная величина может быть задана перечнем всех ее возможных значений и их вероятностей. Такой способ неприменим для непрерывных случайных величин, так как невозможно составить перечень всех возможных значений, заполняющих интервал (a,b). В связи с этим вводится понятие функции распределения вероятностей случайной величины, пригодное как для дискретной, так и для непрерывной случайной величины.

Пусть x – действительное число. Вероятность события, состоящего в том, что X примет значение, меньшее x, т.е. вероятность события , обозначим через . Разумеется, если x изменяется, то, вообще говоря, изменяется и , т.е. есть функция x.

Функцией распределения называют функцию , определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее x:

Геометрически это равенство можно истолковать так: есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее x.

Рассмотрим по-отдельности случаи дискретной и непрерывной случайной величин.

1. Дискретная случайная величина. Рассмотрим функцию распределения дискретной случайной величины , принимающей значения .

.

Таким образом, функция распределения случайной дискретной величины равна , где , и суммирование производится по тем , для которых .

Таким образом, в точках функция распределения испытывает скачки.

2. Непрерывная случайная величина. В отличие от случая дискретной случайной величины в данном случае пробегает все непрерывное множество значений, а сама функция возрастает монотонно.

Если вероятность события равна , а вероятность события равна , то вероятность того, что случайная величина заключена между и равна разности соответствующих значений функции распределения: .

Вероятность того, что непрерывная случайная величина X примет одно определенное значение, равна нулю. Имеет смысл рассматривать лишь вероятность попадания ее в некоторый интервал, пусть даже и сколь угодно малый.

График функции распределения для дискретной случайной величины представляет собой ступенчатую разрывную функцию, а непрерывной –монотонно возрастающую непрерывную функцию.

Пример. Пусть среднедушевой доход в у.е. описывается функцией распределения

где . Какова вероятность того, что в случайно выбранной семье среднедушевой доход меньше 200 у.е.? Вероятность того, что среднедушевой доход лежит в пределах от 50 до 150 у.е.? Ответ: а) , б) 0,534.