logo search
Конспект лекций по ТВМС

Лекция 13. Понятие о статистических оценках случайных величин Эмпирическая функция распределения

Пусть известно статистическое распределение частот количественного признака X. Обозначим через число наблюдений, при которых наблюдалось значение признака, меньшее x и через n – общее число наблюдений. Очевидно, относительная частота события X < x равна и является функцией x. Так как эта функция находится эмпирическим (опытным) путем, то ее называют эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого значения x относительную частоту события X < x. Таким образом, по определению

,

где - число вариант, меньших x, n – объем выборки.

В отличие от эмпирической функции распределения выборки, функцию распределения генеральной совокупности называют теоретической функцией распределения. Различие между этими функциями состоит в том, что теоретическая функция определяет вероятность события X < x, тогда как эмпирическая – относительную частоту этого же события.

При росте n относительная частота события X < x, т.е. стремится по вероятности к вероятности этого события. Иными словами

Свойства эмпирической функции распределения:

  1. Значения эмпирической функции принадлежат отрезку [0,1]

  2. - неубывающая функция

  3. Если - наименьшая варианта, то = 0 при , если - наибольшая варианта, то =1 при .

Эмпирическая функция распределения выборки служит для оценки теоретической функции распределения генеральной совокупности.

Пример. Построим эмпирическую функцию по распределению выборки:

Варианты

2

6

10

Частоты

12

18

30

Найдем объем выборки: 12+18+30=60. Наименьшая варианта равна 2, поэтому =0 при x  2. Значение x<6, т.е. , наблюдалось 12 раз, следовательно, =12/60=0,2 при 2< x 6. Аналогично, значения X < 10, т.е. и наблюдались 12+18=30 раз, поэтому =30/60 =0,5 при 6< x 10. Так как x=10 – наибольшая варианта, то =1 при x> 10. таким образом, искомая эмпирическая функция имеет вид: