makaroff_3sem_2004
Пример 4:
Рассмотрим уравнение : интегрируя, получаем: x2 + y2 = C = R2 (рис.4)
– множество окружностей с центром в начале координат
рис.4
Определение: Общее решение – множество решений дифференциального уравнения есть совокупность функций F(x, y, C)=0, C.
Определение: Частное решение получают при подстановке конкретного значения константы в общее решение
Особые решения не входят в общие решения через каждую точку особого решения проходит более одной интегральной кривой.
Содержание
- Ряды. Дифференциальные уравнения.
- Критерий Коши сходимости ряда.
- Следствие 1
- Следствие 2
- Достаточные признаки сходимости знакопостоянных рядов. Признаки сравнения.
- 2) Предельный
- Признак Даламбера.
- Доказательство:
- Признак Коши (радикальный).
- Доказательство:
- Признак сравнения 3.
- Признак Куммера.
- Признак Гауса. (без доказательства)
- Интегральный признак. (Коши-Маклорена)
- Знакопеременные ряды
- Признак Лейбница.
- Функциональные ряды
- Равномерная сходимость функциональной последовательности и функционального ряда.
- Признак равномерной сходимости.
- 1) Признак Вейерштрасса (мажорантный признак)
- 2) Признак Абеля – Дирихле.
- Теорема о непрерывности суммы функционального ряда.
- Теорема об интегрировании функционального ряда.
- Дифференцирование функциональных рядов
- Доказательство (на основании теоремы об интегрировании функционального ряда):
- Степенные ряды
- Ряды Тейлора
- Ряды Тейлора для основных элементарных функций
- Тригонометрические ряды Фурье
- Дифференциальные уравнения
- Пример 2:
- Пример 3:
- Пример 4:
- Пример 5:
- Пример 7:
- Основные тины дифференциальных уравнений
- Линейное дифференциальное уравнение 1-го порядка.
- Пример:
- Дифференциальное уравнение n-ного порядка
- Линейные дифференциальные уравнения
- Линейная зависимость функций
- Определитель Вронского.
- Фундаментальная система решений линейного однородного уравнения
- Линейное однородное дифференциальное уравнение с постоянными коэффициентами
- Решение неоднородного линейного дифференциального уравнения n-го порядка
- Метод вариации постоянных
- Метод неопределенных коэффициентов для нахождения частного решения неоднородного дифференциального уравнения с постоянными коэффициентами.
- Решение систем линейных дифференциальных уравнений с постоянными коэффициентами