Пример 5:
см. рис.5 (через каждую точку на оси Ох проходит два решения (две интегральные кривые): частное и особое).
Рис.5
Можно построить интегральную кривую в каждой точке, используя понятие о геометрическом смысле производной: tgα = f(x,y) (рис.6). Таким образом задают поле направлений, т.е. задают прямую в каждой точке, а потом проводят кривую касательную ко всем прямым в этих точках и получают интегральную кривую (одно из решений).
рис.6
Сформулируем важнейшую теорему.
Теорема (О существовании и единственности решения задачи Коши дифференциального уравнения y’=f(x ,y)):
Пусть - непрерывная функция (рис.7) в области , причем - также непрерывна в . Тогда существует единственное решение y=y(x) дифференциального уравнения y’=f(x, y) с начальным условием y(x0)=y0, (x0,y0) принадлежит D. Следовательно, через точку проходит только одна интегральная кривая.
Рис.7
(без доказательства).
Yandex.RTB R-A-252273-3- Ряды. Дифференциальные уравнения.
- Критерий Коши сходимости ряда.
- Следствие 1
- Следствие 2
- Достаточные признаки сходимости знакопостоянных рядов. Признаки сравнения.
- 2) Предельный
- Признак Даламбера.
- Доказательство:
- Признак Коши (радикальный).
- Доказательство:
- Признак сравнения 3.
- Признак Куммера.
- Признак Гауса. (без доказательства)
- Интегральный признак. (Коши-Маклорена)
- Знакопеременные ряды
- Признак Лейбница.
- Функциональные ряды
- Равномерная сходимость функциональной последовательности и функционального ряда.
- Признак равномерной сходимости.
- 1) Признак Вейерштрасса (мажорантный признак)
- 2) Признак Абеля – Дирихле.
- Теорема о непрерывности суммы функционального ряда.
- Теорема об интегрировании функционального ряда.
- Дифференцирование функциональных рядов
- Доказательство (на основании теоремы об интегрировании функционального ряда):
- Степенные ряды
- Ряды Тейлора
- Ряды Тейлора для основных элементарных функций
- Тригонометрические ряды Фурье
- Дифференциальные уравнения
- Пример 2:
- Пример 3:
- Пример 4:
- Пример 5:
- Пример 7:
- Основные тины дифференциальных уравнений
- Линейное дифференциальное уравнение 1-го порядка.
- Пример:
- Дифференциальное уравнение n-ного порядка
- Линейные дифференциальные уравнения
- Линейная зависимость функций
- Определитель Вронского.
- Фундаментальная система решений линейного однородного уравнения
- Линейное однородное дифференциальное уравнение с постоянными коэффициентами
- Решение неоднородного линейного дифференциального уравнения n-го порядка
- Метод вариации постоянных
- Метод неопределенных коэффициентов для нахождения частного решения неоднородного дифференциального уравнения с постоянными коэффициентами.
- Решение систем линейных дифференциальных уравнений с постоянными коэффициентами