35) Производная степенной функции
Формула для вычисления производной степенной функции xn, где n — произвольное натуральное число, большее 1, такова: (xn)’=nxn-1 (1)Формула производной функции х2 уже известна: (х2)' = 2х. Пользуясь формулой дифференцирования произведения, получаем: (x3)’=( x2⋅x)’= (x2)’x+ x2(x)’= 2x⋅x + x2⋅1=3 x2;(x4)’=( x3⋅x)’= (x3)’x+ x3(x)’= 3x2⋅x+ x3⋅1=4x3.Заметим теперь, что (x2)’=2x2-1, (x3)’=3x3-1, (x4)’=4x4-1, т.е. для n, равного 2, 3 и 4, формула (1) доказана. Продолжая аналогичные рассуждения, нетрудно убедиться в справедливости формулы (1) для n, равного 5, 6 и т. д. Докажем, что формула (1) верна для любого натурального n>4. Допустим, что формула (1) верна при n = k, т. е. что (xk)’=kxk-1.Покажем, что тогда формула (1) верна при n = k+1. Действительно, (xk+1)’=(xk⋅x)’=( xk)’⋅x + xk⋅(x)’= kxk-1⋅x + xk = (k+1) xkПоэтому из того, что формула (1) верна при п = 4, следует, что она верна и при n = 5, но тогда она верна и при п = 6, а следовательно, и при n = 7 и т. д. до любого n∈ N (строгое доказательство основано на методе математической индукции). Если n = 1 или n = 0, то при х≠0 эта формула также справедлива. Действительно, по формуле (1) при х≠0 (x1)’=1⋅x1-1 = 1⋅x0 =1,(x0)’=0⋅x0-1 = 0,что совпадает со значениями производных функций х и 1, уже известными из предыдущего пункта. Пусть, наконец, п — целое отрицательное число, тогда n = —m, , где т — число натуральное. Применяя правило дифференцирования частного и пользуясь уже доказанной для натуральных т формулой (1), получаем при х≠0: В результате можно сделать вывод: Для любого целого n и любого x (x≠0 при n≤1) (xn)'=nxn-1Из дифференцируемости степенной функции и основных правил вычисления производных вытекает, что целые рациональные функции (многочлены) и дробно-рациональные функции дифференциремы в каждой точке своей области определения.
- 1) Понятие вектора,модуль,коллинеарность и компланарность векторов.Геометрическое и экономическое понятие
- 2) Действие над векторами.Правило параллелограмма и многоугольника
- 3) Координаты вектора,действие над ними,заданными координатам
- 4) Скалярное произведение вектора.Угол между векторами
- 5) Условие параллельности и перпендикулярности векторов
- 6 ) Уравнение прямой на плоскости
- 7) Уравнение прямой в пространстве
- 8) Взаимное расположение прямых,угол между ними.Условие параллельности и перпендикулярност
- 9) Уравнение плоскости,частные случаи общего уравнения плоскости
- 10) Угол между плоскостями.Условие параллельности и перпендикулярности
- 11) Определители и их свойства
- 12) Вычисление определителя
- 13) Решение систем линейных уравнений методом Крамера
- 14) Метод Гаусса
- 15) Матрицы и действия над ними
- 16, 17)) Обратная матрица
- 19) Ранг матриц
- 20) Понятие функции
- 21) Область определения,четность,монотонность
- 22) Понятие предела,бесконечно малые величины и их свойства
- 23) Основные теоремы о пределах
- 24) Виды неопределенности
- 25) Первый замечательный предел
- 26) Второй замечательный предел
- 27) Задачи приводящие к понятию производной
- 28) Производная и ее смысл
- 29) Уравнение касательной
- 30) Основные правила дифференцирования
- 31) Производные тригонометрических функций
- 32) Производные обратных тригонометрических функцй
- 33) Производная логарифмической функции
- 34) Производная сложной функции
- 35) Производная степенной функции
- 36) Производная неявной функции
- 37) Производная высших порядков
- 38) Диф функции
- 39) Приложение дифференциала
- 40) Теорема Лагранджа
- 41) Теорема Роля
- 42) Правило Лопиталя
- 43) Теорема ферма
- 44) Монотонность функции на интервале
- 45) Условие существования экстренума
- 46) Выпуклость и вогнутость функции
- 47) Асимптоты графика функции
- 48) Исследование функции построение графика с помощью производной. Исследование функции с помощью производной
- 49) Исследование функции с помощью производной
- 31) Производные тригонометрических функций