27) Задачи приводящие к понятию производной
Для начала, обратимся к повсеместно употребляемому, общепринятому, бытующему уже почти три века, ставшему классическим, математическому понятию (определению) производной функции (дифференциала).Разъясняется это понятие во всех многочисленных учебниках одинаково и приблизительно так.Пусть величина u зависит от аргумента х как u=f(x). Если f(x) была зафиксирована в двух точках значениях аргумента: x2, x1,, то мы получаем величины u1=f(x1), и u2=f(x2). Разность двух значений аргумента x2, x1 назовём приращением аргумента и обозначим как Δx=x2-x1 (следовательно, x2=x1+Δx). Если аргумент изменился на Δx=x2-x1, , то функция изменилась (приросла) как разность двух значений функции u1=f(x1), u2=f(x2) на величину приращения функции Δf. Записывается обычно так:Δf=u1-u2=f(x2)-f(x1) . Или с учётом что x2=x1+Δx, можно записать, что изменение функции равно Δf= f(x1+Δx)-f(x1). И это изменение произошло, естественно, на области возможных значений функции x2 и x1,.Считается, что если величины x2 и x1, бесконечно близки по величине друг к другу, тогда Δx=x2-x1, - бесконечно мало.Определение производной: Производной функции f(x) в точке x0 называется предел отношения приращения функции Δf в этой точке к приращению аргумента Δх, когда последнее стремится к нулю (бесконечно мало). Записывается так.LimΔx→0 (Δf(x0)/Δx)=limΔx→0 ((f(x+Δx)-f(x0))/Δx)=f`(x0)Нахождение производной называется дифференцированием. Вводится определение дифференцируемой функции: Функция f, имеющая производную в каждой точке некоторого промежутка, называется дифференцируемой на данном промежутке.
- 1) Понятие вектора,модуль,коллинеарность и компланарность векторов.Геометрическое и экономическое понятие
- 2) Действие над векторами.Правило параллелограмма и многоугольника
- 3) Координаты вектора,действие над ними,заданными координатам
- 4) Скалярное произведение вектора.Угол между векторами
- 5) Условие параллельности и перпендикулярности векторов
- 6 ) Уравнение прямой на плоскости
- 7) Уравнение прямой в пространстве
- 8) Взаимное расположение прямых,угол между ними.Условие параллельности и перпендикулярност
- 9) Уравнение плоскости,частные случаи общего уравнения плоскости
- 10) Угол между плоскостями.Условие параллельности и перпендикулярности
- 11) Определители и их свойства
- 12) Вычисление определителя
- 13) Решение систем линейных уравнений методом Крамера
- 14) Метод Гаусса
- 15) Матрицы и действия над ними
- 16, 17)) Обратная матрица
- 19) Ранг матриц
- 20) Понятие функции
- 21) Область определения,четность,монотонность
- 22) Понятие предела,бесконечно малые величины и их свойства
- 23) Основные теоремы о пределах
- 24) Виды неопределенности
- 25) Первый замечательный предел
- 26) Второй замечательный предел
- 27) Задачи приводящие к понятию производной
- 28) Производная и ее смысл
- 29) Уравнение касательной
- 30) Основные правила дифференцирования
- 31) Производные тригонометрических функций
- 32) Производные обратных тригонометрических функцй
- 33) Производная логарифмической функции
- 34) Производная сложной функции
- 35) Производная степенной функции
- 36) Производная неявной функции
- 37) Производная высших порядков
- 38) Диф функции
- 39) Приложение дифференциала
- 40) Теорема Лагранджа
- 41) Теорема Роля
- 42) Правило Лопиталя
- 43) Теорема ферма
- 44) Монотонность функции на интервале
- 45) Условие существования экстренума
- 46) Выпуклость и вогнутость функции
- 47) Асимптоты графика функции
- 48) Исследование функции построение графика с помощью производной. Исследование функции с помощью производной
- 49) Исследование функции с помощью производной
- 31) Производные тригонометрических функций