2) Действие над векторами.Правило параллелограмма и многоугольника
Сложение двух свободных векторов можно осуществлять как по правилу параллелограмма, так и по правилу треугольника.Правило треугольника. Для сложения двух векторов и по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.Правило параллелограмма. Для сложения двух векторов и по правилу параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.А модуль (длину) вектора суммы определяют по теореме косинусов где — угол между векторами, когда начало одного совпадает с концом другого. Так же используется формула теперь — угол между векторами выходящими из одной точки.Сложение двух скользящих векторов определено лишь в случае, когда прямые, на которых они расположены, пересекаются. Тогда каждый из векторов переносится вдоль своей прямой в точку пересечения этих прямых, после чего сложение осуществляется по правилу параллелограмма.Сложение двух фиксированных векторов определено лишь в случае, когда они имеют общее начало. Их сложение в этом случае осуществляется по правилу параллелограмма.Сложение коллинеарных скользящих векторовЕсли скользящие векторы параллельны, то при их сложении главная трудность состоит в определении прямой, на которой будет расположена их сумма. (Величину и направление вектора суммы было бы естественно определить точно так же, как и в случае сложения свободных векторов.) В механике при изучении статики для решения вопроса о сложении параллельных сил, которые, как известно, задаются скользящими векторами, вводится дополнительная гипотеза: к системе векторов можно добавить два вектора, равных по величине, противоположных по направлению и расположенных на одной прямой, пересекающей прямые, на которых расположены данные вектора. Пусть, например, надо сложить скользящие векторы и , расположенные на параллельных прямых. Добавим к ним векторы и , расположенные на одной прямой. Прямые, на которых расположены векторы и , и пересекаются. Поэтому определены векторы Прямые, на которых расположены векторы и , пересекаются всегда, за исключением случая, когда векторы и равны по величине и противоположны по направлению, в котором говорят, что векторы и образуют пару (векторов).Таким образом, под суммой векторов и можно понимать сумму векторов и , и эта сумма векторов определена корректно во всех случаях, когда векторы и не образуют пару.Произведение вектора на числоПроизведением вектора и числа λ называется вектор, обозначаемый (или ), модуль которого равен , а направление совпадает с направлением вектора , если , и противоположно ему, если . Если же , или вектор нулевой, тогда и только тогда произведение — нулевой вектор.Обычно принято в записи произведения числа и вектора число записывать слева, но в принципе допустим и обратный порядок, хотя все же обычное соглашение состоит в том, чтобы его избегать, если нет прямой необходимости. Так или иначе, . Из определения произведения вектора на число легко вывести следующие свойства:если , то . Наоборот, если , то при некотором λ верно равенство ; всегда °, то есть каждый вектор равен произведению его модуля на орт.
- 1) Понятие вектора,модуль,коллинеарность и компланарность векторов.Геометрическое и экономическое понятие
- 2) Действие над векторами.Правило параллелограмма и многоугольника
- 3) Координаты вектора,действие над ними,заданными координатам
- 4) Скалярное произведение вектора.Угол между векторами
- 5) Условие параллельности и перпендикулярности векторов
- 6 ) Уравнение прямой на плоскости
- 7) Уравнение прямой в пространстве
- 8) Взаимное расположение прямых,угол между ними.Условие параллельности и перпендикулярност
- 9) Уравнение плоскости,частные случаи общего уравнения плоскости
- 10) Угол между плоскостями.Условие параллельности и перпендикулярности
- 11) Определители и их свойства
- 12) Вычисление определителя
- 13) Решение систем линейных уравнений методом Крамера
- 14) Метод Гаусса
- 15) Матрицы и действия над ними
- 16, 17)) Обратная матрица
- 19) Ранг матриц
- 20) Понятие функции
- 21) Область определения,четность,монотонность
- 22) Понятие предела,бесконечно малые величины и их свойства
- 23) Основные теоремы о пределах
- 24) Виды неопределенности
- 25) Первый замечательный предел
- 26) Второй замечательный предел
- 27) Задачи приводящие к понятию производной
- 28) Производная и ее смысл
- 29) Уравнение касательной
- 30) Основные правила дифференцирования
- 31) Производные тригонометрических функций
- 32) Производные обратных тригонометрических функцй
- 33) Производная логарифмической функции
- 34) Производная сложной функции
- 35) Производная степенной функции
- 36) Производная неявной функции
- 37) Производная высших порядков
- 38) Диф функции
- 39) Приложение дифференциала
- 40) Теорема Лагранджа
- 41) Теорема Роля
- 42) Правило Лопиталя
- 43) Теорема ферма
- 44) Монотонность функции на интервале
- 45) Условие существования экстренума
- 46) Выпуклость и вогнутость функции
- 47) Асимптоты графика функции
- 48) Исследование функции построение графика с помощью производной. Исследование функции с помощью производной
- 49) Исследование функции с помощью производной
- 31) Производные тригонометрических функций