1) Понятие вектора,модуль,коллинеарность и компланарность векторов.Геометрическое и экономическое понятие
1) Вектором называется направленный отрезок (или, что то же, упорядоченная пара точек). Обозначают: (точка A - начало вектора, точка В - конец вектора) или одной буквой - .2)Длиной вектора (модулем) называется расстояние между началом и концом вектора. Длина вектора обозначается | | или | |..3) Нулевым вектором называется вектор, у которого начало и конец совпадают. Обозначают: .. 4)Единичным вектором называется вектор, длина которого равна единице.Единичный вектор, имеющий одинаковое направление с данным вектором , называется ортом вектора и обозначается обычно символом ..5) Векторы называются коллинеарными, если они расположены на одной прямой или на параллельных прямых. Нулевой вектор считается коллинеарным любому вектору.. 6)Векторы называются равными, если они коллинеарны, имеют одинаковые длины и одинаковое направление.Три вектора в пространстве называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях. Если среди трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы компланарны Длиной или модулем вектора АВ называется длина отрезка и обозначается |АВ|. Вектор, длина которого равна нулю, называется нулевым вектором и обозначается 0 . Нулевой вектор направления не имеет.Понятие вектор в геометрии отлично от определяемого в алгебре. Различают понятие свободного и связанного (приложенного, закреплённого) вектора.Связанный вектор или направленный отрезок — упорядоченная пара точек евклидова пространства.Свободный вектор — класс эквивалентности направленных отрезков.При этом два направленных отрезка считаются эквивалентными, если они:коллинеарны,равны по длине,одинаково направлены (сонаправлены)Существует естественный изоморфизм свободных векторов и параллельных переносов пространства (каждый перенос взаимно однозначно соответствует какому-то свободному вектору). На этом также строят геометрическое определение свободного вектора, просто отождествляя его с соответственным переносом.Большую роль играют векторы в изучении бесконечно малых трансформаций пространства.
- 1) Понятие вектора,модуль,коллинеарность и компланарность векторов.Геометрическое и экономическое понятие
- 2) Действие над векторами.Правило параллелограмма и многоугольника
- 3) Координаты вектора,действие над ними,заданными координатам
- 4) Скалярное произведение вектора.Угол между векторами
- 5) Условие параллельности и перпендикулярности векторов
- 6 ) Уравнение прямой на плоскости
- 7) Уравнение прямой в пространстве
- 8) Взаимное расположение прямых,угол между ними.Условие параллельности и перпендикулярност
- 9) Уравнение плоскости,частные случаи общего уравнения плоскости
- 10) Угол между плоскостями.Условие параллельности и перпендикулярности
- 11) Определители и их свойства
- 12) Вычисление определителя
- 13) Решение систем линейных уравнений методом Крамера
- 14) Метод Гаусса
- 15) Матрицы и действия над ними
- 16, 17)) Обратная матрица
- 19) Ранг матриц
- 20) Понятие функции
- 21) Область определения,четность,монотонность
- 22) Понятие предела,бесконечно малые величины и их свойства
- 23) Основные теоремы о пределах
- 24) Виды неопределенности
- 25) Первый замечательный предел
- 26) Второй замечательный предел
- 27) Задачи приводящие к понятию производной
- 28) Производная и ее смысл
- 29) Уравнение касательной
- 30) Основные правила дифференцирования
- 31) Производные тригонометрических функций
- 32) Производные обратных тригонометрических функцй
- 33) Производная логарифмической функции
- 34) Производная сложной функции
- 35) Производная степенной функции
- 36) Производная неявной функции
- 37) Производная высших порядков
- 38) Диф функции
- 39) Приложение дифференциала
- 40) Теорема Лагранджа
- 41) Теорема Роля
- 42) Правило Лопиталя
- 43) Теорема ферма
- 44) Монотонность функции на интервале
- 45) Условие существования экстренума
- 46) Выпуклость и вогнутость функции
- 47) Асимптоты графика функции
- 48) Исследование функции построение графика с помощью производной. Исследование функции с помощью производной
- 49) Исследование функции с помощью производной
- 31) Производные тригонометрических функций