logo
Vyshka

13) Решение систем линейных уравнений методом Крамера

Для системы n линейных уравнений с n неизвестными (над произвольным полем) с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов)В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство: В этой форме формула Крамера справедлива без предположения, что Δ отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1,b2,...,bn и x1,x2,...,xn, либо набор c1,c2,...,cn состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.Система линейных уравнений: Определители Решение: