logo search
Vyshka

34) Производная сложной функции

Если функция f имеет производную в точке х0, а функция g имеет производную в точке y0=f(x0)y то сложная функция h(х) = g(f(х)) также имеет производную в точке х0, причем h’(x0) = g’(f(x0))•f’(x0) (1)Для доказательства формулы (1) надо (как и раньше) при Δx≠0 рассмотреть дробь Δh/Δx и установить, что при Δx→0. Введем обозначения: Δy = f(x0+Δx)-f(x0)= ΔfТогда Δh = h(х0 + Δх) - h(x0) = g(f(x0 +Δx)) - g(f(x0)) = g(y0 + Δy) - g(y0) = Δg. Δy→0 при Δx→0, так как f дифференцируема в точке x0. Далее доказательство мы проведем только для таких функций f, у которых Δf≠0 в некоторой окрестности точки х0. Тогда при Δx→0, так как Δf/Δx→f’(x0) при Δx→0, а Δg/Δy→g’(y0) при Δy→0, что выполнено при Δx→0.