Vyshka
34) Производная сложной функции
Если функция f имеет производную в точке х0, а функция g имеет производную в точке y0=f(x0)y то сложная функция h(х) = g(f(х)) также имеет производную в точке х0, причем h’(x0) = g’(f(x0))•f’(x0) (1)Для доказательства формулы (1) надо (как и раньше) при Δx≠0 рассмотреть дробь Δh/Δx и установить, что при Δx→0. Введем обозначения: Δy = f(x0+Δx)-f(x0)= ΔfТогда Δh = h(х0 + Δх) - h(x0) = g(f(x0 +Δx)) - g(f(x0)) = g(y0 + Δy) - g(y0) = Δg. Δy→0 при Δx→0, так как f дифференцируема в точке x0. Далее доказательство мы проведем только для таких функций f, у которых Δf≠0 в некоторой окрестности точки х0. Тогда при Δx→0, так как Δf/Δx→f’(x0) при Δx→0, а Δg/Δy→g’(y0) при Δy→0, что выполнено при Δx→0.
Содержание
- 1) Понятие вектора,модуль,коллинеарность и компланарность векторов.Геометрическое и экономическое понятие
- 2) Действие над векторами.Правило параллелограмма и многоугольника
- 3) Координаты вектора,действие над ними,заданными координатам
- 4) Скалярное произведение вектора.Угол между векторами
- 5) Условие параллельности и перпендикулярности векторов
- 6 ) Уравнение прямой на плоскости
- 7) Уравнение прямой в пространстве
- 8) Взаимное расположение прямых,угол между ними.Условие параллельности и перпендикулярност
- 9) Уравнение плоскости,частные случаи общего уравнения плоскости
- 10) Угол между плоскостями.Условие параллельности и перпендикулярности
- 11) Определители и их свойства
- 12) Вычисление определителя
- 13) Решение систем линейных уравнений методом Крамера
- 14) Метод Гаусса
- 15) Матрицы и действия над ними
- 16, 17)) Обратная матрица
- 19) Ранг матриц
- 20) Понятие функции
- 21) Область определения,четность,монотонность
- 22) Понятие предела,бесконечно малые величины и их свойства
- 23) Основные теоремы о пределах
- 24) Виды неопределенности
- 25) Первый замечательный предел
- 26) Второй замечательный предел
- 27) Задачи приводящие к понятию производной
- 28) Производная и ее смысл
- 29) Уравнение касательной
- 30) Основные правила дифференцирования
- 31) Производные тригонометрических функций
- 32) Производные обратных тригонометрических функцй
- 33) Производная логарифмической функции
- 34) Производная сложной функции
- 35) Производная степенной функции
- 36) Производная неявной функции
- 37) Производная высших порядков
- 38) Диф функции
- 39) Приложение дифференциала
- 40) Теорема Лагранджа
- 41) Теорема Роля
- 42) Правило Лопиталя
- 43) Теорема ферма
- 44) Монотонность функции на интервале
- 45) Условие существования экстренума
- 46) Выпуклость и вогнутость функции
- 47) Асимптоты графика функции
- 48) Исследование функции построение графика с помощью производной. Исследование функции с помощью производной
- 49) Исследование функции с помощью производной
- 31) Производные тригонометрических функций