9.1. Эллипс
1. Возьмем на плоскости две точки
Опр.Эллипсом называется множество точек плоскости, для каждой из которых сумма расстояний до двух данных точек, называемых фокусами,
есть величина постоянная, большая расстояния между фокусами.
2. Составим уравнение эллипса.
Выберем систему координат
Пусть точка
принадлежит эллипсу
(3)
Преобразуем уравнение (1), возводя в квадрат обе части:
(4)
Мы показали, что координаты точек эллипса удовлетворяют уравнению (4). Но при переходе от (3) к (4) мы дважды возводили уравнение в квадрат, при этом могли появиться лишние корни. Убедимся, что точки, координаты которых удовлетворяют уравнению (4), принадлежат эллипсу, то есть
=
Аналогично:
Так как тоИз (2)поэтому
Значит,
(5)
Уравнение (4) называется каноническим уравнением эллипса.
Формулы (3) дают фокальные радиусы эллипса
3.Исследование формы эллипса.
ЕслитоТо есть у эллипса есть две оси симметрииицентр симметрииТочки пересечения эллипса с осями координат называются еговершинами. Пользуясь симметрией эллипса, рассмотрим его форму в 1 четверти.
При росте от 0 доубывает отдо 0.
Продолжим чертеж симметрично в другие четверти.
Как видно, эллипс – линия ограниченная, расположенная в прямоугольнике Вершиныцентр эллипса.
Заметим, что фокусы эллипса всегда принадлежат большей оси.
Пример.
4. Эксцентриситет эллипса.
Опр.Эксцентриситет
При фокусы совпадают:эллипс является окружностью. Найдем:
Как видно, чем меньше тем дробьближе к 1, то есть эллипс становится шире. Чем большетем больше эллипс вытянут вдоль оси
5. Параметрические уравнения эллипса.
Пусть задан эллипс
Построим две
окружности
Произвольный луч под углом к оси
пересекает их в точках Построим точкуОчевидны равенства:
(6)
Подставив (6)в уравнение эллипса, получим верное равенство, следовательно, точка принадлежит эллипсу. Уравнения (6) называютсяпараметрическими уравнениями эллипса.
Замечание. Можно доказать обратное утверждение: если точка принадлежит эллипсу, то найдется значение параметра такое, что выполняются соотношения (6).
Отсюда ясен способ построения эллипса.
6. Директрисы эллипса.
Опр.Директрисами эллипса называются прямые, параллельные малой оси и отстоящие от неё на расстояние
Очевидны уравнения директрис:
Найдем отношение расстояний точки эллипса до фокуса и до соответствующей директрисы. Расстояния до фокусов дают формулы (5):
Расстояния до директрис:Отсюда:
Свойство директрис эллипса: эллипс есть множество точек, отношение расстояний от каждой из которых до фокуса к расстоянию до соответствующей директрисы постоянно и равно эксцентриситету.
Задача. Составьте уравнение эллипса, если расстояние между директрисами а между фокусами
- Безверхняя и. С.
- §2. Линейные операции над векторами
- §3. Линейная зависимость векторов
- §4. Координаты вектора
- §5. Скалярное произведение векторов
- §6. Направляющие косинусы вектора
- §7. Векторное произведение векторов.
- §8. Смешанное произведение векторов.
- Раздел 2. Метод координат на плоскости
- §1. Аффинная система координат
- § 2. Деление отрезка в данном отношении
- §3. Декартова прямоугольная система координат
- § 4. Ориентация плоскости
- §5. Полярные координаты
- §6. Алгебраическая линия
- §7. Прямая линия на плоскости
- 7.1.Различные уравнения прямой
- 7.3. Взаимное расположение двух прямых
- 7.4. Прямая в декартовой прямоугольной системе координат
- §8. Формулы преобразования координат
- § 9. Линии 2-го порядка
- 9.1. Эллипс
- 9.2. Гипербола
- 9.3. Парабола
- 9.4. Кривые 2-го порядка как конические сечения
- §10. Общее уравнение линии 2-го порядка
- Часть 1. Преобразуем систему координат поворотом на угол вокруг начала.
- Часть 2. Исследуем уравнение (17):
- Раздел 3. Система координат в пространстве
- §1. Плоскость
- §2. Взаимное расположение двух плоскостей
- §3.Плоскость в дпск. Основные задачи.
- §4. Прямая в пространстве.
- §5. Поверхности 2-го порядка
- 5.1. Понятие поверхности 2-го порядка
- 5.2. Цилиндрические поверхности.
- 5.3. Конические поверхности
- 5.4. Эллипсоид
- 5.5 Однополостный гиперболоид
- 5.6. Двуполостный гиперболоид
- 5.7. Эллиптический параболоид
- 5.8. Гиперболический параболоид
- Вариант индивидуального задания.
- Литература