logo
Аналитическая геометрия (конспект лекций)

5.3. Конические поверхности

Зададим в пространстве линию

и точку

Опр. Поверхность, образованная прямыми, проходящими через одну точку и пересекающими направляющую линиюназываетсяконической.

вершина конуса

Получим уравнение конической поверхности в дпск с вершиной и направляющей

Пусть произвольная точка конической поверхности, прямая

пересекает напрвляющую в точке Векторыиколлинеарны:

Подставим координаты точки в уравнение направляющей:

(26)