voprosy_1-25 (1)
9) Основные правила дифференциального исчисления.
1) Теорема Ролля.
Пусть f(x) непрерывна на отрезке и дифференцируема в каждой внутренней точке. Пусть f(a)=f(b). Тогда на существует хотя бы 1 точка С, такая, что f’(c)=0.
Пример: f(x)=sin x, a=0, b=П. f(0)= sin0=0. f(П)=sin П=0. f(x)= cos x =0⇒ x=
2 ) Теорема Лагранжа.
Пусть f(x) непрерывна на отрезке и дифференцируема в каждой внутренней точке. Тогда существует С принадлежащая , f’(c) =
Пример: f(x) = x2, a=0, b=1. = = 4= f’(c) = 2c⇒ c=2
Теорема Ферма.
Пусть f(x) непрерывна на отрезке и дифференцируема. Пусть в некоторой точке С функция принимает макс. и миним. значение. Тогда f’(c)=0.
Содержание
- Функции и способы их задания. Элементарные функции
- Предел последовательности. Сходящиеся и расходящиеся последовательности.
- Определение предела функции. Примеры.
- Основные свойства пределов. Замечательные пределы.
- Непрерывность функции. Точки разрыва 1 и 2 рода.
- Свойства непрерывных функций
- Производная функции. Геометрический и физический смысл производной.
- Дифференциал функции. Основные правила дифференцирования.
- 9) Основные правила дифференциального исчисления.
- 10 ) Правило Лопиталя. Формулы Тейлора и Маклорена.
- 11) Исследование функции с помощью дифференциального исчисления.
- 12) Функции нескольких переменных. Частные производные.
- 13) Условный экстремум. Метод множителей Лагранжа.
- 14) Неопределенный интеграл и его основные свойства.
- 15) Замена переменных и интегрирование по частям для неопределенного интеграла.
- 16) Интегрирование рациональных функций.
- 17) (Подписать к графику!!) Интегральная сумма и определенный интеграл.
- 18) Основные свойства определенных интегралов. Методы интегрирования.
- 19) Геометрические приложения определенного интеграла.
- 1) Вычисление площади плоских фигур
- 2) Вычисление объема
- 20) Приближенное вычисление определенного интеграла. Методы интегрирования.
- 1) Формула прямоугольников
- 2) Формула трапеции
- 21) Дифференциальные уравнения. Примеры задач, приводящих к дифференциальным уравнениям.
- 22) Задача Коши и теорема Коши.
- 23) Дифференциальные уравнения с разделяющимися переменными.
- 24) Решение дифференциальных уравнений методом подстановки (метод Бернулли)
- Первый способ
- Второй способ
- 25) Решение дифференциальных уравнений методом вариации постоянной (метод Лангранжа) Метод вариации постоянной (метод Лагранжа)