voprosy_1-25 (1)
16) Интегрирование рациональных функций.
Опр. Рациональная функция (или рац. дробь) – это функция вида , где f(x) и g(x) – многочлены от x
Примеры: x; ; x2-1;
Опр. Рациональная дробь называется правильной, если степень многочлена f(x) меньше степени g(x).
Опр. Простейшие рациональные дроби – это дробь вида
, m>1 целое, A и C – постоянные
, где p2-4q<0(многочлен не имеет корней.
Теорема. Всякая рациональная дробь является суммой многочлена и правильной дроби. Любая правильная дробь разлагается в сумму простейших дробей.
Пример:
Интегрирование некоторых простейших дробей:
Интегрировать рациональные функции можно выражая через простейшие дроби.
Пример: , так как
Содержание
- Функции и способы их задания. Элементарные функции
- Предел последовательности. Сходящиеся и расходящиеся последовательности.
- Определение предела функции. Примеры.
- Основные свойства пределов. Замечательные пределы.
- Непрерывность функции. Точки разрыва 1 и 2 рода.
- Свойства непрерывных функций
- Производная функции. Геометрический и физический смысл производной.
- Дифференциал функции. Основные правила дифференцирования.
- 9) Основные правила дифференциального исчисления.
- 10 ) Правило Лопиталя. Формулы Тейлора и Маклорена.
- 11) Исследование функции с помощью дифференциального исчисления.
- 12) Функции нескольких переменных. Частные производные.
- 13) Условный экстремум. Метод множителей Лагранжа.
- 14) Неопределенный интеграл и его основные свойства.
- 15) Замена переменных и интегрирование по частям для неопределенного интеграла.
- 16) Интегрирование рациональных функций.
- 17) (Подписать к графику!!) Интегральная сумма и определенный интеграл.
- 18) Основные свойства определенных интегралов. Методы интегрирования.
- 19) Геометрические приложения определенного интеграла.
- 1) Вычисление площади плоских фигур
- 2) Вычисление объема
- 20) Приближенное вычисление определенного интеграла. Методы интегрирования.
- 1) Формула прямоугольников
- 2) Формула трапеции
- 21) Дифференциальные уравнения. Примеры задач, приводящих к дифференциальным уравнениям.
- 22) Задача Коши и теорема Коши.
- 23) Дифференциальные уравнения с разделяющимися переменными.
- 24) Решение дифференциальных уравнений методом подстановки (метод Бернулли)
- Первый способ
- Второй способ
- 25) Решение дифференциальных уравнений методом вариации постоянной (метод Лангранжа) Метод вариации постоянной (метод Лагранжа)