14.Трансляционная симметрия дифракционной картины
При дифракции на щели, дифракционное распределение интенсивности, соответствующее в математике квадрату Фурье-преобразования от прямоугольного импульса, с точностью до постоянного множителя описывается выражением
Щелевое отверстие имеет одну плоскость симметрии. Распределение интенсивности в ДК
от щелевого отверстия представляет произведение квадрата функции синуса на
функцию, определяющую скорость спада интенсивности в ДК. Так как функция синуса уже является периодической, то получению трансляции спектра в ДК нам “мешает” только
затухание дифракционного спектра и различие линейных размеров центрального дифракционного лепестка и боковых.
Дифракционные волны, возникающие при дифракции на плоских апертурах, в соответствии с ГТД порождаются или гладкими участками контура или точками излома (угловыми точками) контура. Угловые точки контура излучают сферические волны, существующие на всей плоскости ДК, а краевые дифракционные волны, как правило, имеют ограниченную область существования. Исключением можно считать тороидальную волну, излучаемую апертурой круглой или
эллиптической формы. В соответствии с ГТД линии структуры в этом случае образуются в результате интерференции двух точечных “скользящих” по окружности источников. Линии минимумов ДК апертур круглой или эллиптической формы представляют систему концентрических колец круглой или эллиптической формы (рис. 2.11). Такая система концентрических окружностей и эллипсов обладает трансляционной симметрией подобия.
Учитывая механизм построения плоской сетки сетчатого орнамента, а также области существования дифракционных волн, для наблюдения трансляционной симметрии в ДК наиболее подходит модель попарной интерференции излучения точечных источников. В случае круглого отверстия таких источников всего два. В силу осевой симметрии бесконечного порядка они образуют систему концентрических окружностей. Для многоугольного контура число таких источников уже больше двух и они являются фиксированными.
Минимальное число таких источников для прямоугольной апертуры – четыре.
Распределение интенсивности в интерференционной картине двух фиксированных точечных источников представляет систему эквидистантных полос. Пересечение систем полос должно образовать сетчатый орнамент.
Трансляционная симметрия дифракционной картины от совокупности прямоугольных элементов. Преобразование ДК путем ее умножения на функцию, обратную затуханию, приводит к появлению трансляционной симметрии, и мы получаем бордюр с одной осью переносов и периодом трансляции, равным π. В радиотехнике такому преобразованию частотного спектра соответствует операция дифференцирования исходного сигнала. Это
преобразование используется и при оптической обработке информации. На практике такое преобразование можно выполнить, используя различные пространственные фильтры.
Распределение интенсивности от прямоугольного отверстия со сторонами 2a и 2b с точностью до постоянного множителя имеет вид
Преобразовав спектр прямоугольного отверстия
аналогичным образом, т.е. умножив его на получим распределение интенсивности,
соответствующее плоской сетке (рис. 2.12).
Элементом трансляции здесь является прямоугольный участок ДК со сторонами π/a, π/b.
С точки зрения ГТД ДК прямоугольного отверстия формируется краевыми волнами и излучением из угловых точек и состоит из двух основных характерных областей – области интерференции краевых волн и области интерференции точечных источников, соответствующих излучению из угловых точек контура. Причем эти области сильно различаются по интенсивности. Интенсивность в области ДК, соответствующей излучению угловых точек, спадает очень быстро (1/x2y2), а область краевых волн – (1/xy). ДК от многоугольной апертуры имеет такой же характер, как и от прямоугольной апертуры, но только в том случае, если ее можно представить в виде совокупности параллелограммных апертур.
Процесс формирования дифракционного поля многоугольной апертуры можно представить несколькими способами: как дифракционное поле, создаваемое точечными источниками, расположенными в пределах всей апертуры; как дифракционное поле, образованное суммой излучения граней; как дифракционное поле, образованное суммой излучения вершин
многоугольника. касается симметрии трансляционной, то, согласно ГТД, она
возникает в зонах влияния волн угловых точек.
Yandex.RTB R-A-252273-3
- 1.Оптический сигнал и оптическая система
- 2.Интерференция в диффузном свете. Спекл-интерферометрия.
- 3.Оптика спеклов
- 1. Когерентные источники
- 2. Некогерентные источники
- 4.Нормально развитая спекл-картина, условия ее наблюдения, контраст спекл-картины, индивидуальный спекл
- 5.Общетеоретические положения
- 6.Значение теоремы и следствия из нее .
- 7.Тонкости в толковании термина "дифракция"
- 9.Многомодовый режим излучения лазера.
- 10.Дифракция частично когерентного излучения на отверстии
- 11. Примеры. Основные свойства преобразования Фурье
- 12.Дифракция и интерференция света. Определение
- 13.Дифракция и интерференция света
- 14.Трансляционная симметрия дифракционной картины
- 15.Свертка
- 16.Теорема Ван Циттерта-Цернике.
- 17.Обобщенные функции. Свертка. Функция корреляции.
- 18.Корреляция
- 19.Примеры практического применения
- 20. Радиус корреляции лазерного излучения
- 21.Распространение взаимной когерентности. Распространение световых волн, функция взаимной когерентности
- 22. Предельные формы взаимной когерентности.
- 23.Пример: Дифракция частично когерентного излучения на щели
- 24.Фурье-образы наиболее часто встречающихся в оптике двумерных сигналов и их свойства
- 25.Типы оптических систем
- 26.Единство и различие явлений дифракция и интерференция
- 27.Временная когерентность излучения лазера
- 28.Пространственная фильтрация
- 29. Оптический сигнал и его преобразование
- 30.Оптика винтовых полей или сингулярная оптика
- 31.Наиболее часто встречающиеся в оптике специальные функции в связи с применением теории систем и преобразований
- 32.Пространственная когерентность излучения.
- 33.Представление поля в дальней зоне через интеграл Фурье
- 34.Преобразование Фурье
- 35.Пространственная фильтрация
- 36 Когерентность лазерного излучения
- 37.Оптические системы, операторы, функционалы.
- 38.Основные свойства преобразования Фурье
- 39.Принцип неопределенности в теории оптического сигнала
- 40.Предельная пространственная когерентность излучения одномодового лазера
- 41.Ограничение разрешающей способности оптической системы и информационной емкости оптических сигналов
- 42.Когерентное поле, некогерентное поле
- 43.Квантовая природа электромагнитного излучения
- 44.Контраст дифракционной картины
- 45. Свойства симметрии дифракционной картины
- 46.Квантовая природа электромагнитного излучения.
- 47.Корреляционные функции и когерентность излучения
- 48.Разрешающая сила оптической системы в классическом рассмотрении
- 48.Разрешающая сила оптической системы в классическом рассмотрении
- 49.Квантовомеханическая модель дифракции монохроматического излучения на щели
- 50.Геометрическая теория дифракции
- 51.Принцип Бабине
- 52.Световое давление
- 53.Определение преобразования Фурье
- 55.Двумерные функции
- 56.Основные свойства спекл-картины, условия формирования
- 1. Размер спекла
- 57.Теория когерентных изображений
- 58.Способы устранения спекл-структуры
- 59.Понятие обобщенных функций. Свойства. Операции
- 60.Понятие спекл, объективной и субъективной спекл-картины.
- 61. Контраст изображения