39.Принцип неопределенности в теории оптического сигнала
Наблюдаемые физические процессы в оптике часто отождествляются с аналитическими сигналами, что позволяет применять для их описания и анализа развитый математический аппарат теории сигналов. В рамках этой теории принцип неопределенности приобретает смысл закономерности, связывающей локализации сигнала в координатном и частотном пространствах.
Пусть s1(t) и s2(t) - зависящие от времени комплексные сигналы. Для них справедливо неравенство Шварца:
С учетом определения скалярного произведения сигналов неравенство Шварца можно записать:
Пусть . В этом случае:
Левая часть неравенства, в случае , что справедливо для реальных физических сигналов, равна квадрату энергии сигнала:
Таким образом:
Если s(ω) - спектральная плотность сигнала s(t), то и. Согласно равенству Парсеваля:, и неравенство примет вид:
Протяженности сигнала во временном и частотном пространствах, по определению:
Подставляя в неравенство и извлекая квадратный корень, получим соотношение неопределенности для сигнала в окончательном виде:
(5.1)
Если речь идет об оптическом сигнале, то умножением неравенства (4.1) на постоянную Планка η получается классическое соотношение неопределенности Гейзенберга для энергии и времени ΔE⋅Δt ≥ η/ 2, так как ΔE = ηΔω.
Если же одновременно умножить и поделить (5.1) на фазовую скорость света v = c / n , то получится: . Так как vΔt = Δx и, то получается другая классическая форма соотношения неопределенности для координаты и импульса фотона:
.
В случае пространственного двумерного оптического сигнала s(x, y), спектр которого s(u,v) и энергия , аналогично с помощью неравенства Шварца выводятся соотношения:.
Перемножая их, получаем общее соотношение: . Если же сигнал зависит также и от времени: s(x, y;t), то его спектр зависит от частоты: s(u,v;ω), и соответственно, полное соотношение неопределенности:
.
При необходимости учета состояния поляризации сигнала, которая имеет две ортогональные составляющие, левая часть соотношения умножается на 2:
.
Особую важность данные соотношения приобретают в связи с задачей о передаче и преобразовании информации, носителем которой выступает сигнал с ограниченным спектром. Центральное место в теории подобных сигналов занимает следующая теорема (в формулировке Котельникова): сигнал s(t), спектр которого s(ω) ограничен частотами ±Ω, может быть восстановлен полностью и без искажений по известным дискретным отсчетам данного сигнала s(tn), взятым во временных точках, расположенных через равные интервалы времени, то есть, может быть представлен в виде ряда:
На практике частота 1/Δt обычно называется частотой дискретизации сигнала, а круговая частота νmax= Ω/2π - несущей частотой. Таким образом, частота дискретизации оказывается равна 2νmax, т.е. удвоенной несущей частоте.
Если отождествить протяженности сигнала во временном и частотном пространстве, входящие в соотношение неопределенности (5.1), с интервалом и частотой дискретизации, входящими в формулировку теоремы Котельникова, то можно сформулировать принципиально важное понятие информационной емкости спектрально-ограниченного сигнала.
Спектрально-ограниченный сигнал можно представить графически в виде области существования – прямоугольника на плоскости ωt, ограниченного предельной частотой Ω и временем T (возможен вариант T →∞ или Ω→∞) (рис. 5.1). Данный прямоугольник разбивается на элементарные ячейки, площадь которых ΔtΔω, в соответствии с соотношением неопределенности, не может быть меньше 1/ 2 . В соответствии с теоремой Котельникова и из соображения удобства, принято разбивать область существования сигнала на ячейки единичной площади: ΔtΔω = 1 (ячейки Габора). По определению, информационная емкость, или число информационных степеней свободы сигнала N равно числу элементарных ячеек в его области существования плюс единица:
Для пространственного оптического сигнала – область существования представляет собой шестимерный параллелепипед, но принцип разбиения на элементарные ячейки и подсчета информационной емкости такой же, как и для чисто временного сигнала: площадь ячейки равна Δx⋅Δy⋅Δξ⋅Δη⋅Δt⋅Δω=1, и число степеней свободы:
, или, с учетом поляризации,.
Рис. 5.1 Область существования сигнала с ограниченным спектром
Таким образом, соотношение неопределенности, утверждающее, что частота и интервал дискретизации сигнала не могут быть одновременно сколь угодно малыми, накладывает физическое ограничение на информационную емкость сигнала.
Yandex.RTB R-A-252273-3
- 1.Оптический сигнал и оптическая система
- 2.Интерференция в диффузном свете. Спекл-интерферометрия.
- 3.Оптика спеклов
- 1. Когерентные источники
- 2. Некогерентные источники
- 4.Нормально развитая спекл-картина, условия ее наблюдения, контраст спекл-картины, индивидуальный спекл
- 5.Общетеоретические положения
- 6.Значение теоремы и следствия из нее .
- 7.Тонкости в толковании термина "дифракция"
- 9.Многомодовый режим излучения лазера.
- 10.Дифракция частично когерентного излучения на отверстии
- 11. Примеры. Основные свойства преобразования Фурье
- 12.Дифракция и интерференция света. Определение
- 13.Дифракция и интерференция света
- 14.Трансляционная симметрия дифракционной картины
- 15.Свертка
- 16.Теорема Ван Циттерта-Цернике.
- 17.Обобщенные функции. Свертка. Функция корреляции.
- 18.Корреляция
- 19.Примеры практического применения
- 20. Радиус корреляции лазерного излучения
- 21.Распространение взаимной когерентности. Распространение световых волн, функция взаимной когерентности
- 22. Предельные формы взаимной когерентности.
- 23.Пример: Дифракция частично когерентного излучения на щели
- 24.Фурье-образы наиболее часто встречающихся в оптике двумерных сигналов и их свойства
- 25.Типы оптических систем
- 26.Единство и различие явлений дифракция и интерференция
- 27.Временная когерентность излучения лазера
- 28.Пространственная фильтрация
- 29. Оптический сигнал и его преобразование
- 30.Оптика винтовых полей или сингулярная оптика
- 31.Наиболее часто встречающиеся в оптике специальные функции в связи с применением теории систем и преобразований
- 32.Пространственная когерентность излучения.
- 33.Представление поля в дальней зоне через интеграл Фурье
- 34.Преобразование Фурье
- 35.Пространственная фильтрация
- 36 Когерентность лазерного излучения
- 37.Оптические системы, операторы, функционалы.
- 38.Основные свойства преобразования Фурье
- 39.Принцип неопределенности в теории оптического сигнала
- 40.Предельная пространственная когерентность излучения одномодового лазера
- 41.Ограничение разрешающей способности оптической системы и информационной емкости оптических сигналов
- 42.Когерентное поле, некогерентное поле
- 43.Квантовая природа электромагнитного излучения
- 44.Контраст дифракционной картины
- 45. Свойства симметрии дифракционной картины
- 46.Квантовая природа электромагнитного излучения.
- 47.Корреляционные функции и когерентность излучения
- 48.Разрешающая сила оптической системы в классическом рассмотрении
- 48.Разрешающая сила оптической системы в классическом рассмотрении
- 49.Квантовомеханическая модель дифракции монохроматического излучения на щели
- 50.Геометрическая теория дифракции
- 51.Принцип Бабине
- 52.Световое давление
- 53.Определение преобразования Фурье
- 55.Двумерные функции
- 56.Основные свойства спекл-картины, условия формирования
- 1. Размер спекла
- 57.Теория когерентных изображений
- 58.Способы устранения спекл-структуры
- 59.Понятие обобщенных функций. Свойства. Операции
- 60.Понятие спекл, объективной и субъективной спекл-картины.
- 61. Контраст изображения