logo
ШПОРЫ

21.Распространение взаимной когерентности. Распространение световых волн, функция взаимной когерентности

Пусть u(P,t) - скалярная амплитуда одной компоненты поляризации электрического или магнитного поля, связанная с монохроматическим оптическим сигналом (излучением). В соответствии с принятым в скалярной теории подходом, рассмотрим каждую компоненту независимо. Здесь Р - пространственная координата точки, а параметр t - момент времени.

Аналитический сигнал, связанный с u(P,t), имеет вид где ν - частота волны, а U(P,ν) - амплитуда фазора.

Пусть волна падает слева на неограниченную поверхность. Необходимо найти амплитуду фазора поля в точке Ро справа от поверхности Σ через характеристики поля на поверхности Σ.

В соответствии с принципом Гюйгенса-Френеля справедливо следующее решение

где λ = с /ν - длина волны излучения (с - скорость света); r - расстояние от точки Р1до точки Р0; θ - угол между прямой линией, соединяющей Р0и Р1, и нормалью к поверхности Σ ; χ(θ) – коэффициент наклона,.

Как правило, рассмотрение большинства задач ведется в приближении малых углов наклона и поэтому в дальнейшем, мы будем считать этот множитель равным единице.

Принцип Гюйгенса-Френеля можно интерпретировать таким образом. Каждая точка на поверхности Σ действует как новый вторичный источник сферических волн. Напряженность поля вторичного источника в точке Р1 пропорциональна , и этот источник излучает с амплитудным коэффициентом направленности χ(θ).

Рис. 6.2. Схема распространения излучения

Функция взаимной когерентности. При распространении волны в пространстве ее структура изменяется. Изменяется соответственно и функция взаимной когерентности. Следовательно, можно говорить о распространении функции взаимной когерентности.

Причина эта объясняется тем фактом, что световые волны подчиняются волновому уравнению.

Рис. 6.3. Распространение функции взаимной когерентности

Решение, основанное на принципе Гюйгенса–Френеля. Рассмотрим распространение световой волны с произвольными свойствами когерентности.

Дана функция взаимной когерентности Γ(Ρ1, Ρ2;τ) на поверхности Σ1и надо найти функцию взаимной когерентности Г(Q1,Q2;τ) на поверхности Σ2. То есть наша цель предсказать результаты интерференционного опыта Юнга на отверстиях Q1и Q2если известны результаты интерференционных опытов на всевозможных отверстиях Р1и Р2.

По определению функция взаимной когерентности на поверхности Σ2

Рис. 6.4. Процесс распространения функции взаимной когерентности

Используя выражение для распространения узкополосного сигнала

,

запишем выражение для узкополосного сигнала для нашего случая для двух точек Q1и Q2поверхности Σ2

Подставив выражение для полей в функцию взаимной когерентности и изменяя порядок выполнения интегрирования и усреднения, получим

Среднее по времени в подынтегральном выражении может быть выражено через функцию взаимной когерентности на поверхности Σ 1, что приводит к основному закону распространения взаимной когерентности

В соответствии с условием квазимонохроматичности (Δω/ω<<1) оптическая разность хода должна быть намного меньше длины когерентности излучения.

Опираясь на это условие, найдем закон распространения излучения для взаимной интенсивности, заметив, что взаимная интенсивность

а также

Подставив это в выражение для распространения взаимной когерентности, при τ=0 получим

Это основное выражение, определяющее закон распространения взаимной интенсивности.

Распределение интенсивности на поверхности Σ 2 можно найти, устремив Q1 к Q2 (т.е. точки Q1 и Q2 должны совпасть) в последней формуле и заменив

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4