53.Определение преобразования Фурье
Анализ Фурье и теория линейных систем образуют фундамент, на котором построены теории формирования изображения, оптической обработки информации и голографии.
По определению преобразованием Фурье функции f(x) (действительной или комплексной) называется интегральная операция.Преобразование такого вида представляет собой функцию независимой переменнойu, называемой частотой. Обратное преобразование Фурье функцииF(u) записывается следующим образом.Необходимым условием существования преобразования Фурье является абсолютная интегрируемость функцийf(x) иF(u), т.е. чтобы значения интегралов
были конечными. Функции, используемые в оптике, определены лишь на ограниченном интервале и для них это требование соблюдается всегда (переменные x иu называются сопряженными). Различия между прямым Фурье-образом и обратным Фурье-образом заключается в различных знаках, содержащихся в экспонентах выражений, а также в наличии множителя 1/2π в формуле обратного преобразования.
В литературе встречаются и другие определения преобразования Фурье, отличающиеся от приведенного здесь как знаком в экспоненте, так и численными коэффициентами, стоящими перед интегралом.
Аналогичным образом определяется и двумерное Фурье-преобразование.
Прямое (1.1)
и обратное
Введем в выражении (1.1) обозначения u =x/λz;v = y/λz.
Величины u иv обычно называются частотами. Тогда выражение (1.1) примет вид
где
Отсюда видно, что выражение (1.1) с точностью до множителя представляет собой Фурье-образ распределения поля на поверхности σ как функцию пространственных частот u иv. Аналогичным образом можно преобразовать и выражение для сферической системы координат, введя обозначения
Большое распространение имеет и частный случай двумерного преобразования Фурье для функций, обладающих осевой симметрией, называемый преобразованием Фурье-Бесселя или преобразованием Ганкеля нулевого порядка. Если функция обладает осевой симметрией ее можно записать как функцию только радиуса r. Соответственно, Фурье-образ становится функцией ρ, не зависящей явно от угла ϕ.
где J0(2πrρ) - функция Бесселя первого рода нулевого порядка.
Учитывая, что
прямое преобразование Фурье можно записать в виде суммы косинус - и синус - преобразований:
В общем случае функция F(u,v) комплексная, и мы можем записать
Спектр амплитуд и фаз записывается соответственно в виде
Действительная часть Фурье-образа всегда четная функция, мнимая часть Фурье-образа - всегда нечетная функция. Комплексность спектра означает сдвиг отдельных его составляющих по фазе.
54.Статистические характеристики когерентных изображений.
Рассмотрим свойства когерентного изображения для случая, когда цель подсвечивается когерентным излучением, и состоит из двух точечных объектов (Рис. 9.1.). Зададим расположение этих объектов с помощью радиус-векторов r1=(x1, y1, z 1), r2=(x2, y2, z2). И пусть изображение этого объекта строится тонкой линзой.
Линза, формирующая изображение, имеет фокусное расстояние f: 1/f=1/rц+1/zи.В этом случае поле в изображении представляется в виде сумм двух слагаемых, соответствующих изображению двух точечных объектов:
E(δ) ~ k1 A′(δ ) + k2 B′(δ ),
где k1, k2– коэффициенты отражения от точечных объектовAиB; δ - радиус вектор изображения.
На рис. 9.2 приведены построенные при различных реализациях x1, x2изображения для случая плоского экрана.
Видно, что распределение интенсивности I(δ) = ⎪E(δ)⎪2 существенно зависит как от k1, k2, и от x1, x2.
Естественно считать k1 ≈ k2. Если выполняется условие x1 - x2 < λrц /dρ, то при k1 ≈ k2 отклики от обоих точечных объектов располагаются практически в одном месте.
Когерентные изображения объектов, состоящих из точек с достаточно
большим случайным разбросом расстояний между ними, сильно флуктуируют,
т.е. представляют собой сильно изрезанные по яркости структуры.
Можно предположить, что при увеличении числа точек, составляющих
подобные объекты, контраст будет увеличиваться.
Контраст в когерентном изображении многоточечного объекта, состоящего из случайно и независимо расположенных точек, разброс по фазе которых существенно превышает длину волны подсвечивающего излучения, стремится к единице
Yandex.RTB R-A-252273-3
- 1.Оптический сигнал и оптическая система
- 2.Интерференция в диффузном свете. Спекл-интерферометрия.
- 3.Оптика спеклов
- 1. Когерентные источники
- 2. Некогерентные источники
- 4.Нормально развитая спекл-картина, условия ее наблюдения, контраст спекл-картины, индивидуальный спекл
- 5.Общетеоретические положения
- 6.Значение теоремы и следствия из нее .
- 7.Тонкости в толковании термина "дифракция"
- 9.Многомодовый режим излучения лазера.
- 10.Дифракция частично когерентного излучения на отверстии
- 11. Примеры. Основные свойства преобразования Фурье
- 12.Дифракция и интерференция света. Определение
- 13.Дифракция и интерференция света
- 14.Трансляционная симметрия дифракционной картины
- 15.Свертка
- 16.Теорема Ван Циттерта-Цернике.
- 17.Обобщенные функции. Свертка. Функция корреляции.
- 18.Корреляция
- 19.Примеры практического применения
- 20. Радиус корреляции лазерного излучения
- 21.Распространение взаимной когерентности. Распространение световых волн, функция взаимной когерентности
- 22. Предельные формы взаимной когерентности.
- 23.Пример: Дифракция частично когерентного излучения на щели
- 24.Фурье-образы наиболее часто встречающихся в оптике двумерных сигналов и их свойства
- 25.Типы оптических систем
- 26.Единство и различие явлений дифракция и интерференция
- 27.Временная когерентность излучения лазера
- 28.Пространственная фильтрация
- 29. Оптический сигнал и его преобразование
- 30.Оптика винтовых полей или сингулярная оптика
- 31.Наиболее часто встречающиеся в оптике специальные функции в связи с применением теории систем и преобразований
- 32.Пространственная когерентность излучения.
- 33.Представление поля в дальней зоне через интеграл Фурье
- 34.Преобразование Фурье
- 35.Пространственная фильтрация
- 36 Когерентность лазерного излучения
- 37.Оптические системы, операторы, функционалы.
- 38.Основные свойства преобразования Фурье
- 39.Принцип неопределенности в теории оптического сигнала
- 40.Предельная пространственная когерентность излучения одномодового лазера
- 41.Ограничение разрешающей способности оптической системы и информационной емкости оптических сигналов
- 42.Когерентное поле, некогерентное поле
- 43.Квантовая природа электромагнитного излучения
- 44.Контраст дифракционной картины
- 45. Свойства симметрии дифракционной картины
- 46.Квантовая природа электромагнитного излучения.
- 47.Корреляционные функции и когерентность излучения
- 48.Разрешающая сила оптической системы в классическом рассмотрении
- 48.Разрешающая сила оптической системы в классическом рассмотрении
- 49.Квантовомеханическая модель дифракции монохроматического излучения на щели
- 50.Геометрическая теория дифракции
- 51.Принцип Бабине
- 52.Световое давление
- 53.Определение преобразования Фурье
- 55.Двумерные функции
- 56.Основные свойства спекл-картины, условия формирования
- 1. Размер спекла
- 57.Теория когерентных изображений
- 58.Способы устранения спекл-структуры
- 59.Понятие обобщенных функций. Свойства. Операции
- 60.Понятие спекл, объективной и субъективной спекл-картины.
- 61. Контраст изображения