Курсовая работа ЧМ 2 курс 2012
Решение дифференциальных уравнений в частных производных
1. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
Большое число задач, связанных с анализом физических (и не только физических) полей описываются дифференциальными уравнениями в частных производных. К сожалению, во многих случаях, представляющих практический интерес, найти аналитическое решение таких задач трудно или практически невозможно. Это обычно обусловлено сложной формой или неоднородностью свойств области, в которой отыскивается решение. Однако результат можно получить численно с помощью компьютера. Подходы к решению дифференциальных уравнений с частными производными определяются их математической формой. Поэтому рассмотрим классификацию уравнений с этой точки зрения.
-
Yandex.RTB R-A-252273-3
Содержание
- Решение дифференциальных уравнений в частных производных
- Классификация уравнений по математической форме
- Основы метода конечных разностей
- 1.2.3. Аппроксимация уравнения гиперболического типа
- 1.2.4. Аппроксимация уравнения параболического типа
- 1.2.5. Погрешность решения
- Основы метода конечных элементов
- Формирование сетки
- Конечно-элементная аппроксимация
- Построение решения
- 1.4. Использование пакетa matlab
- 1.4.1. Выполнение расчетов в пакете matlab
- 2. Указания к выполнению работы
- 2.1. Подготовка к работе
- 2.2. Порядок выполнения работы
- 2.3. Содержание отчета
- 2.4. Контрольные вопросы
- 3. Варианты заданий
- Задание № 2
- Часть 1.
- Часть 2.
- Библиографический список