Свойства бинарных отношений
1. Отношение R в множестве М называется рефлексивным , если для справедливо
В матрице смежности на главной диагонали стоят единицы.
В графе каждый элемент (вершина) имеет петлю – дугу вида (т,т):
2. Если для справедливо , то отношение R называется антирефлексивным.
В матрице смежности на главной диагонали стоят нули.
В графе нет ни одной петли.
3. Отношение R в множестве М называется симметричным, если для из условия следует , .
Матрица смежности симметрична относительно главной диагонали.
В графе любая пара вершин связана двумя противоположно направленными дугами:
4. Отношение R в множестве М называется антисимметричным, если для из условий и следует, что mi = mj или оба отношения и выполняются одновременно только тогда, когда тi = mj .
Матрица смежности несимметрична.
В графе могут быть петли, но связь между вершинами, если она имеется, отображается только одной дугой.
5. Отношение R в множестве М называется асимметричным (несимметричным), если для и взаимоисключаются, т.е. если , то и наоборот.
Матрица смежности несимметрична с нулевыми элементами на главной диагонали.
В графе петли отсутствуют, а вершины могут быть связаны только одной дугой.
Если отношение асимметрично, то оно и антирефлексивно.
6. Отношение R в множестве М называется транзитивным , если для из условий и следует, что .
В графе для всякой пары дуг таких, что конец первой совпадает с началом второй, существует третья дуга, имеющая общее начало с первой и общий конец со второй дугой. Эта дуга называется транзитивно замыкающей дугой:
- Богданов а.Е. Курс лекций
- Содержание
- § 1. Основные понятия теории множеств
- Основные понятия теории множеств
- Способы задания множеств
- Операции над множествами
- § 2. Соответствия. Функции. Отображения
- § 3. Понятие алгебры. Алгебра множеств кантора
- Диаграмма Эйлера-Венна
- § 4. Бинарные отношения
- Способы задания бинарных отношений
- Свойства бинарных отношений
- § 5. Бинарное отношение эквивалентности
- § 6. Бинарное отношение порядка. Упорядоченные
- § 7. Решетки (структуры). Изоморфизм
- Изоморфизм множеств
- Дедекиндовые решетки
- Дистрибутивные решетки
- § 8. Отношения (обобщение). Алгебраические
- Операции над отношениями
- Алгебраические системы
- Глава ιι. Комбинаторный анализ
- § 1. Основные определения
- Правила суммы и произведения
- § 2. Формулы расчета перестановок и сочетаний
- § 3. Бином и полином
- § 4. Подстановки
- § 5. Метод включений и исключений
- § 6. Метод производящих функций
- § 7. Комбинаторная мера информации. Вероятность искажения информации
- Глава ιіі. Теория графов
- § 1. Первоначальные понятия теории графов
- § 2. Операции над графами. Способы задания графов Операции над графами
- Способы задания графов
- § 3. Маршруты, цепи, циклы и другие характеристики графа
- § 4. Алгебраическая форма представления графа
- Глава іv. Некоторые приложения графов
- § 1. Эйлеровы графы. Алгоритм флери. Гамильтоновы
- Эйлеровы графы
- Алгоритм Флери.
- Метод построения эйлерового обхода двоичного куба
- Гамильтоновы графы. Метод Робертса – Флореса
- Метод перебора Робертса – Флореса
- § 2. Пространство циклов графа
- § 3. Независимое множество вершин графа
- Алгоритм выделения пустых подграфов
- § 4. Вершинное число внешней устойчивости графа
- § 5. Плотность графа
- Алгоритм выделения полных подграфов
- § 6. Раскраска графа
- Оценки хроматического числа
- Алгоритм минимальной раскраски вершин графа
- § 7. Планарность графа
- Глава V. Оптимизационные алгоритмы теории графов
- § 1. Определение кратчайших путей. Алгоритм дейкстры
- § 2. Максимальный поток через сеть. Алгоритм
- Алгоритм Форда – Фалкерсона
- § 3. Построение остова экстремального веса. Алгоритм краскала
- § 4. Метод ветвей и границ: задача коммивояжера. Общая модель задачи поиска
- Дерево поиска частичных решений
- § 5. Применение ориентированных деревьев в задачах теории кодирования и диагностирования
- § 6. Построение оптимального дерева бинарного поиска. Алгоритм гильберта – мура
- Алгоритм Гильберта – Мура построения оптимального дерева бинарного поиска Суть алгоритма
- Алгоритм
- § 7. Сложность задач теории графов. Задача синтеза управляющих систем
- Задача синтеза управляющих систем
- Задача о выполнимости
- Литература
- Электронное пособие курс лекций
- «Дискретная математика».