§ 2. Максимальный поток через сеть. Алгоритм
ФОРДА – ФАЛКЕРСОНА
Функциональное назначение большинства физически реализованных сетей состоит в том, что они служат носителями систем потоков, т.е. систем, в которых некоторые объекты текут, движутся или транспортируются по системе каналов (дуг сети) с ограниченной пропускной способностью. Примерами могут служить потоки автомобильного транспорта по сети автодорог, грузов по участку железнодорожной сети, воды в городской сети водоснабжения, электрического тока в электросети, телефонных или телеграфных сообщений по каналам связи, программ в вычислительной сети. Ограниченная пропускная способность означает, что интенсивность перемещения соответствующих предметов по каналу ограничена сверху определенной величиной.
Наиболее часто в сети решается задача о максимальном потоке и минимальном разрезе.
Разрезом графа G называют некоторое множество дуг (ребер) этого графа, удаление которых делает этот граф несвязным.
Пусть задана сеть . Каждой дуге поставлено в соответствие неотрицательное число , называемое пропускной способностью дуги.
Пусть v – произвольная вершина сети. Обозначим через множество дуг, заходящих в v , а через множество дуг, выходящих из v.
Потоком сети называют функцию , удовлетворяющую условиям:
где вершина s – исток сети, а вершина t – сток сети.
Функцию можно рассматривать как количество вещества, протекающего (в единицу времени) по дуге от вершины vi к вершине vj .
Второе условие в определении потока называют условием сохранения потока: в промежуточных вершинах потоки не создаются и не исчезают. А это означает, что поток, выходящий из вершины истока s, в точности равен потоку, входящему в вершину стока t.
Величина называется остаточной пропускной способностью дуги .
Если , то дуга называется насыщенной.
Теорема. Максимальный поток через сеть G равен минимальной пропускной способности ее разреза.
- Богданов а.Е. Курс лекций
- Содержание
- § 1. Основные понятия теории множеств
- Основные понятия теории множеств
- Способы задания множеств
- Операции над множествами
- § 2. Соответствия. Функции. Отображения
- § 3. Понятие алгебры. Алгебра множеств кантора
- Диаграмма Эйлера-Венна
- § 4. Бинарные отношения
- Способы задания бинарных отношений
- Свойства бинарных отношений
- § 5. Бинарное отношение эквивалентности
- § 6. Бинарное отношение порядка. Упорядоченные
- § 7. Решетки (структуры). Изоморфизм
- Изоморфизм множеств
- Дедекиндовые решетки
- Дистрибутивные решетки
- § 8. Отношения (обобщение). Алгебраические
- Операции над отношениями
- Алгебраические системы
- Глава ιι. Комбинаторный анализ
- § 1. Основные определения
- Правила суммы и произведения
- § 2. Формулы расчета перестановок и сочетаний
- § 3. Бином и полином
- § 4. Подстановки
- § 5. Метод включений и исключений
- § 6. Метод производящих функций
- § 7. Комбинаторная мера информации. Вероятность искажения информации
- Глава ιіі. Теория графов
- § 1. Первоначальные понятия теории графов
- § 2. Операции над графами. Способы задания графов Операции над графами
- Способы задания графов
- § 3. Маршруты, цепи, циклы и другие характеристики графа
- § 4. Алгебраическая форма представления графа
- Глава іv. Некоторые приложения графов
- § 1. Эйлеровы графы. Алгоритм флери. Гамильтоновы
- Эйлеровы графы
- Алгоритм Флери.
- Метод построения эйлерового обхода двоичного куба
- Гамильтоновы графы. Метод Робертса – Флореса
- Метод перебора Робертса – Флореса
- § 2. Пространство циклов графа
- § 3. Независимое множество вершин графа
- Алгоритм выделения пустых подграфов
- § 4. Вершинное число внешней устойчивости графа
- § 5. Плотность графа
- Алгоритм выделения полных подграфов
- § 6. Раскраска графа
- Оценки хроматического числа
- Алгоритм минимальной раскраски вершин графа
- § 7. Планарность графа
- Глава V. Оптимизационные алгоритмы теории графов
- § 1. Определение кратчайших путей. Алгоритм дейкстры
- § 2. Максимальный поток через сеть. Алгоритм
- Алгоритм Форда – Фалкерсона
- § 3. Построение остова экстремального веса. Алгоритм краскала
- § 4. Метод ветвей и границ: задача коммивояжера. Общая модель задачи поиска
- Дерево поиска частичных решений
- § 5. Применение ориентированных деревьев в задачах теории кодирования и диагностирования
- § 6. Построение оптимального дерева бинарного поиска. Алгоритм гильберта – мура
- Алгоритм Гильберта – Мура построения оптимального дерева бинарного поиска Суть алгоритма
- Алгоритм
- § 7. Сложность задач теории графов. Задача синтеза управляющих систем
- Задача синтеза управляющих систем
- Задача о выполнимости
- Литература
- Электронное пособие курс лекций
- «Дискретная математика».