9. Методика вивчення тригонометричних рівнянь і нерівностей.
В ШКМ починають із розв'язування найпростіших типів рівнянь типу: виду , , . Ще у 9-му класі учням пропонують знайти за таблицями значення гострих кутів, якщо , . Завдання виразити всю множину розв'язків рівняння ставлять в 10-му класі. Тут же знайомлять учнів з записом розв'язку тригонометричних рівнянь.
Рівняння | Множина розв’язків | Умова |
|
|
a є R a є R |
Розв'язування тригонометричних рівнянь слід супроводжувати розв'язуванням коренів на одиничному колі і на графіках функцій.
приклад: соsх= 1/2. Знайдемо величину кута х, косинус якого 0,5 користуючись колом.
, , ,
. Але рівняння соsх=1/2 задаємо не менше та й і враховується періодичність функції косинус буде: ,x є Z x = ,a є Z
Це рівняння має безліч розв'язків. І особливо добре це видно з графіка, побудувати одночасно графіки у=соsх, у=1/2 Побудуй графік
В ШКМ слід розглядати найпростіші тригонометричні рівняння з параметрами. Треба дати учням зрозуміти добре, що при рівняння не має розв'язків, його задовольняють всі значення 2Пк, при ф=-1 - всі значення (2к+1)П, при всі значення ,к є Z. Коли учні зрозуміють як слід розв'язувати найпростіші завдання, їх слід ускладнювати до таких як , ,
Т-тригонометрична функція. Тригонометричні нерівності більш складний для розуміння учнів матеріал. Тут потрібно поступово підводити учнів до її вивчення, постійно повторювати вивчене на уроках. На простих нерівностях розглядають аналітичним і графічним способом.
- 1. Методика проведення позакласної роботи з математики. Питання методики поглибленого вивчення математики.
- 2. Рівняння і нерівності в основній школі і методика їх вивчення.
- 3. Функції в курсі алгебри основної школи. Методика введення поняття функції. Підібрати задачі практичного змісту, які приводять до поняття функції
- 4. Методика вивчення показникової, логарифмічної і степеневої функцій.
- 5. Методика вивчення числових систем. Проценти.
- 8. Вивчення алгебраїчних виразів і їх тотожніх перетворень в шкільному курсі математики.
- 9. Методика вивчення тригонометричних рівнянь і нерівностей.
- 10. Методика вивчення і застосування похідної в шкільному курсі математики.
- 11. Методика вивчення показникових рівнянь і нерівностей.
- 12. Координати і вектори на площині і в просторі. Застосування до розв’язування задач.
- 13. Алгоритмічний підхід у навчанні математики, його позитивні і негативні сторони.
- 14. Теореми, способи доведення теорем. Методика навчання учнів доведенню математичних тверджень.
- 15. Означення математичних понять. Види означень. Логічні помилки в означеннях понять.
- 16. Методика вивчення теми «Тіла обертання».
- 17. Методика вивчення теми «многогранники».
- 18. Задачі в навчанні математиці. Методика розв’язування математичних задач.
- 19. Методика введення первісної (поняття) та її застосування в шкільному курсі математики.
- 20. Об’єми і площі поверхонь геометричних тіл. Методика вивчення.
- 22. Аналіз програм з математики зош. Проблема досягнення обов’язкових результатів навчання.
- 23. Геометричні величини(довжини, кутові величини, площі), методика їх вивчення.
- 24. Методичні особливості вивчення теми «коло і круг».
- 30. Методика вивчення теми «Подібність фігур».