3. Функції в курсі алгебри основної школи. Методика введення поняття функції. Підібрати задачі практичного змісту, які приводять до поняття функції
В курсі алгебри і початків аналізу пропонується таке означення: функцією з областю визначення D, називається відповідність, при якій кожному числу з множини D відповідає деякий цілком певний елемент з множини Е, а кожен елемент множини Е поставлено у відповідність деякому елементу з множини D. В 6 класі слід ознайомити учнів з найпростішими діаграмами, таблицями значень. В 6 класі вводиться поняття координат, слід зауважити, що а) кожній точці відповідає єдина пара чисел, б) кожній парі чисел відповідає єдина точка. Пояснення поняття функції потрібно починати з конкретного прикладу (залежність виду пружини від маси вантажу). Говорять, що довжина пружини є функцією маси підвішеного до неї тіла.
Означення. Якщо кожному значенню змінної х з деякої множини М відповідає одне значення змінної у, то змінну у наз. функцією від х. Змінна х – аргумент, множина М – область визначення функції (аргумент – незалежна змінна, функція - залежна).
Далі треба пояснити, як функція задається за допомогою графіка. Найпростіші елементарні функції вивчають у такій послідовності: , , , , , . Графік кожної з них спочатку будують за точками, а потім роблять висновки. Лінійною називають функцію, яка задається формулою , де х, у – змінні, а, b – числа. Спочатку діти розглядають функцію при b=0. При цьому звертають увагу, що графік функції можна зобразити за допомогою графіка вже відомої їм раніше функції за допомогою паралельного перенесення.
Функцію наз. прямою пропорційністю, оскільки будь-які (відмінні від нуля) значення такої функції пропорційні відповіднім значенням аргументу.
- обернена пропорційність (при збільшенні х значення у зменшиться в стільки разів). Графік гіпербола, якщо k>0 – вітки гіперболи в 1 і 3 чвертях, k<0 – 2 і 4.
Графікам функції є дві вітки параболи, а - одна вітка (виходить з початку координат і розміщена в 1 чверті).
Функція, яка задається формулою називається квадратною. Найпростішою з них є . Слід звернути увагу на властивості графіка:
1. Весь графік розташований у верхній півплощині.
2. Лише одна його точка лежить на осі х.
3. Графік симетричний відносно осі у.
4. Кожна вітка параболи нескінченна.
Графік функції парабола, координати вершини:
Вводять також фізичне і геометричне трактування функції.
Парабола – траєкторія руху тіла, кинутого під кутом до горизонту.
– периметр квадрата прямо пропорційний довжині k його сторони.
- 1. Методика проведення позакласної роботи з математики. Питання методики поглибленого вивчення математики.
- 2. Рівняння і нерівності в основній школі і методика їх вивчення.
- 3. Функції в курсі алгебри основної школи. Методика введення поняття функції. Підібрати задачі практичного змісту, які приводять до поняття функції
- 4. Методика вивчення показникової, логарифмічної і степеневої функцій.
- 5. Методика вивчення числових систем. Проценти.
- 8. Вивчення алгебраїчних виразів і їх тотожніх перетворень в шкільному курсі математики.
- 9. Методика вивчення тригонометричних рівнянь і нерівностей.
- 10. Методика вивчення і застосування похідної в шкільному курсі математики.
- 11. Методика вивчення показникових рівнянь і нерівностей.
- 12. Координати і вектори на площині і в просторі. Застосування до розв’язування задач.
- 13. Алгоритмічний підхід у навчанні математики, його позитивні і негативні сторони.
- 14. Теореми, способи доведення теорем. Методика навчання учнів доведенню математичних тверджень.
- 15. Означення математичних понять. Види означень. Логічні помилки в означеннях понять.
- 16. Методика вивчення теми «Тіла обертання».
- 17. Методика вивчення теми «многогранники».
- 18. Задачі в навчанні математиці. Методика розв’язування математичних задач.
- 19. Методика введення первісної (поняття) та її застосування в шкільному курсі математики.
- 20. Об’єми і площі поверхонь геометричних тіл. Методика вивчення.
- 22. Аналіз програм з математики зош. Проблема досягнення обов’язкових результатів навчання.
- 23. Геометричні величини(довжини, кутові величини, площі), методика їх вивчення.
- 24. Методичні особливості вивчення теми «коло і круг».
- 30. Методика вивчення теми «Подібність фігур».