logo
MVM_1__40

30. Методика вивчення теми «Подібність фігур».

Подібність по Погорєлову означається так: "Дві фігури називаються подібними, якщо вони переводяться одна в одну перетворенням подібності" (Перетворення фігури F в фігуру називається перетворенням подібності, якщо при цьому перетворенні відстані між точками змінюються в одну й ту ж саму кількість разів). Дві фігури називаються подібними і познач. . Найважливішим в даній темі є питання про подібність трикутників. Два трикутники називають подібними, якщо відповідні кути рівні, а відповідні сторони пропорційні.

Якщо ~ то , ,АВ/А1В1=АС/А1С1=ВС/В1С1.

Учні формулюють три ознаки подібності: 2 трик. подібні, якщо:

1. Два кути одного відповідно дорівнюють двом кутам другого;

  1. Дві сторони одного пропорційні двом сторонам другого і кути, утворені цими сторонами, рівні;

  2. Сторони одного трикутника пропорційні сторонам другого трикутника.

Дов.1.: Дано трикутники АВС і ; .Довести: ~ Побудуємо трикутник А2В2С2 - одержується перетворенням гомотетії з коефіцієнтом гомотетії к=АВ/ Тоді . = , = , = . =AB.

Отже, =

На основі ознак рівності і подібності трикутників можна довести багато теорем. Особливо ефективний метод подібності при розв'язуванні задач на побудову.

31. Методика проведення перших уроків планіметрії.

Систематичний курс геометрії починають вивчати в 7 класі.

Основна мета перших уроків геометрії – дати поняття про геометрію, систематизувати наочні уявлення про найпростіші геометричні фігури, ввести первісні (не означувані) поняття і поставити учнів перед потребою ввести означення деяких відомих їм фігур (відрізок, півпряма, півплощина, кут, трикутник, паралельні прямі), розглянути первісні та означувані відношення, сформулювати основні властивості найпростіших фігур і властивості вимірювання відрізків і кутів, які наприкінці теми буде названо аксіомами. На перших уроках також вводиться поняття про теореми, їх доведення і аксіоми. В учнів формується потреба в доведенні нових тверджень за допомогою аксіом і вже доведених тверджень. Вони набувають перші уміння виконувати доведення.

Важливим завданням перших уроків є формування геометричної мови на основі вже відомої і нової для учнів термінології.

Вже на перших уроках учні вивчають такі аксіоми:

32. Методика вивчення теми "Чотирикутники".

Термін "многокутник" в геометрії використовується для назви двох різних фігур – простої замкненої ламаної і частини площини, обмеженої такою ламаною. Чотирикутником називається фігура, яка складається з чотирьох точок і чотирьох відрізків, які їх сполучають. При цьому жодні три з даних точок не лежать на одній прямій, а відрізки не перетинаються. Слід дати учням чітко зрозуміти, що слід формулювати повне означення а не окреме перше речення. Далі пояснюється, що таке сторона і вершина чотирикутника. Першим чотирикутником є паралелограм, прямокутник, ромб, квадрат, трапеція. Розглядаються властивості кожної з цих фігур.

Паралелограм: 1. Протилежні сторони рівні. 2. Протилежні кути рівні. 3. Діагоналі паралелограма перетинаються і в точці перетину діляться пополам. Усі ці властивості поширюються і на прямокутник, квадрат, ромб.

Окремо розглядають трапецію - чотирикутник, у якого дві сторони паралельні. Вони називаються основами, інші дві - бічними сторонами. Трапеції поділяються на прямокутні, рівнобічні і інші. Тут же доводиться теорема про середню лінію трапеції на основі теореми про середню лінію трикутника. Слід також наголосити учням, як правильно зображати чотирикутники: дотримуватись рівності відповідних сторін, їх паралельності, трапецію зображати донизу більшою основою.

10