Связь с расширением числовых полей
Вопрос разрешимости в квадратных радикалах тесно связан с алгебраическими расширениями числовых полей.
Пусть f(x)- левая часть уравнения (2)- есть многочлен над полем P. Поэтому будем считать, что P является минимальным числовым полем, которое содержит коэффициенты многочлена f(x),т.е. P=Q( ),т.к. всякое поле содержит поле Q рациональных чисел.
Определение 2. Основным полем P(или областью рациональности) уравнения =0 называется алгебраическое расширение Q( ) поля Q, образованное присоединением к нему коэффициентов данного уравнения.
Лемма. Для того чтобы уравнение (2) было разрешимо в квадратных радикалах, необходимо и достаточно, чтобы каждый из его корней можно было выразить в квадратных радикалах через некоторые числа поля P.
Доказательство: В соответствии с определением 1, уравнение (2) разрешимо в квадратных радикалах, если каждый его корень выражается в квадратных радикалах через его коэффициенты. Поэтому доказательство леммы сводится к проверке того, что некоторое число ξ выражается в квадратных радикалах через коэффициенты уравнения (2) тогда и только тогда, когда оно выражается в квадратных радикалах через некоторые числа основного поля уравнения (2).
Если число ξ выражается в квадратных радикалах через коэффициенты (i= 0,1,…,n) уравнения, то тем самым оно выражается в квадратных радикалах через числа поля P=Q( ), ибо всех .
Пусть теперь, наоборот, число выражается в квадрвтных радикалах через числа поля .Каждое из чисел в свою очередь выражается рационально через некоторые рациональные числа и коэффициенты (i= 0,1,…,n) данного уравнения. Но любое рациональное число также выражается рационально через коэффициенты (i=0,1,…,n). Действительно, среди последних есть хотя бы одно число, отличное от нуля, например, 0; поэтому числа 0,1, -1, рационально выражаются через :
0= - ; 1= ; -1=-
А произвольное число рационально выражается через 0,1,-1;
= при > 0 и = при < 0
Следовательно, каждое (i= 1,…m),а поэтому и рационально выражаются через коэффициенты .
Теперь ясно, что разрешимость уравнения в квадратных радикалах означает возможность выразить все его корни в квадратных радикалах через числа основного поля .
С другой стороны, очевидно, что возможность выразить некоторое число в квадратных радикалах через числа поля означает возможность выразить все числа поля в квадратных радикалах через числа поля .
Определение 3. Если - основное поле уравнения =0,а - корни этого уравнения, то поле =( ), образованное присоединением к всех корней (i=1,2,…,n) называется нормальным полем (нормою) или полем разложения данного уравнения.
Теорема 3. Для того,чтобы уравнение (2) было разрешимо в квадратных радикалах, необходимо и достаточно, чтобы любое число его нормального поля выражалось в квадратных радикалах через числа основного поля .
Доказательство: Если произвольное число из поля =( ) выражается в квадратных радикалах через числа поля , то, в частности, и корни уравнения выражаются в квадратных радикалах через числа поля , т.е. уравнение решается в квадратных радикалах. Наоборот, если выражаются в квадратных радикалах через числа поля ,то все числа полей ( ), выражаются в квадратных радикалах через числа поля .
Следствие. Если - квадратичное расширение поля , то всякое число выражается в квадратных радикалах через числа поля .
Доказательство: По определению квадратичного расширения =( ), где – корень некоторого квадратного уравнения ax²+bx+c=0,коэффициенты которого принадлежат P, а корни и не принадлежат. Очевидно , т.к. , поэтому есть норма данного квадратного уравнения.
Таким образом, вопрос о разрешимости алгебраического уравнения в квадратных радикалах свелся к вопросу о возможности выразить все числа некоторого поля в квадратных радикалах через числа подполя .
- Алгебра
- График учебного процесса
- III семестр
- IV семестр
- 1. Цели и задачи дисциплины, место в учебном процессе, требования к уровню содержания дисциплины.
- 2. Технологическая карта дисциплины
- 3. Содержание дисциплины
- Самостоятельная работа (темы , выносимые на срс и методическая поддержка срс)
- Литература для самостоятельной работы
- 4. Организация текущего и промежуточного контроля знаний
- 5. Методические рекомендации преподавателю
- 6. Работа с ресурсами Internet
- 7. Материальное обеспечение дисциплины
- 8. Методическое обеспечение дисциплины:
- Глоссарий
- Вопросы, выносимые на экзамены
- III семестр
- IV семестр
- Методические рекомендации по организации внеаудиторной и аудиторной самостоятельной работы студентов
- Контрольно - измерительные материалы
- III семестр Модуль 1
- Модуль 2 Контрольная работа по теме «Многочлены от одной переменной»
- IV семестр Модуль 1 Тест по теме «Многочлены над полем рациональных чисел» для межсессионного учета знаний
- Контрольная работа по теме «Многочлены над полями рациональных, действительных и комплексных чисел»
- Модуль 2 Контрольная работа по теме «Расширения полей и задачи, связанные с этим»
- Методические указания по подготовке практических занятий
- Методические рекомендации по выполнению курсовых работ
- Темы курсовых работ
- 1. Вопросы делимости и решения уравнений в кольце целых чисел.
- . Программа итоговой государственной аттестации студентов
- Группы и подгруппы
- Группа подстановок
- Подгруппы
- Циклические группы
- Разложение группы по подгруппе
- 6. Задачи и упражнения для самостоятельного выполнения
- Нормальные делители. Фактор - группы.
- 1. Нормальные делители
- 2. Фактор – группы
- Гомоморфизмы групп
- Задачи и упражнения для самостоятельного выполнения
- Элементарные сведения о кольцах
- Кольцо с единицей
- Делители нуля. Область целостности
- Поле частных
- Задачи и упражнения для самостоятельного выполнения
- Гомоморфизмы колец
- Понятие идеала. Примеры
- Операции над идеалами
- Сравнения и классы вычетов по идеалу. Фактор – кольцо
- Гомоморфизм колец. Теорема о гомоморфизмах
- Характеристика кольца с единицей
- Задачи и упражнения для самостоятельного выполнения
- Делимость в области целостности
- 2. Кольцо главных идеалов
- Евклидовы кольца.
- Задачи и упражнения для самостоятельного выполнения
- 1. Многочлены над полем
- 2. Кольцо многочленов как евклидово кольцо
- 3. Техника деления с остатком. Схема Горнера
- 4. Теорема Безу
- 5. Наибольший общий делитель. Алгоритм Евклида
- 6.Наименьшее общее кратное
- 7. Неприводимые многочлены
- 8. Каноническое разложение многочлена
- 9. Вопросы и упражнения для самостоятельной работы
- Комплексных чисел
- 1. Вводные замечания
- 2. Свойства модуля многочлена
- 3. Основная теорема алгебры комплексных чисел
- 4. Разложение многочлена над полем с в произведение линейных множителей
- 5. Разложение многочленов над полем r в произведение неприводимых множителей
- 6 Задачи и упражнения для самостоятельного выполнения
- IV семестр
- Приводимость и неприводимость многочленов над полем действительных, комплексных и рациональных чисел
- Рациональные корни многочлена с рациональными коэффициентами
- Понятие алгебраического числа
- 1. Вводные замечания
- 2. Свойства модуля многочлена
- 3. Основная теорема алгебры комплексных чисел
- 4. Разложение многочлена над полем с
- 5. Разложение многочленов над полем r
- 6 Задачи и упражнения для самостоятельного выполнения
- 1. Алгебраические числа.
- 2. Простое алгебраическое расширение поля.
- 3. Уничтожение иррациональности в знаменателе.
- 4. Конечные расширения полей.
- 6. Вопросы и упражнения для самостоятельной работы.
- Лекции 7-8
- Поле алгебраических чисел
- Понятие разрешимости в квадратных радикалах
- Определение 1. Алгебраическое уравнение
- Связь с расширением числовых полей
- 4. Признаки того, что число выражается в квадратных радикалах.
- 5. Общий критерий разрешимости в квадратных радикалах
- 6. Примеры геометрических задач, сводящихся к уравнениям, неразрешимым в квадратных радикалах
- Задача об удвоении куба
- Задача о трисекции угла
- Задача о квадратуре круга
- 7. Вопросы и упражнения для самостоятельной работы