logo search
Уравнения свертки. Обобщенные функции

1.1 Основные понятия

Обобщенные функции математическое понятие, обобщающее классическое понятие функции. Обобщенные функции были введены впервые в конце 20-х гг. XX в. П. Дираком в его исследованиях по квантовой механике, где он систематически использует понятие дельта-функции и ее производных. Основы математической теории обобщенных функций были заложены С.Л. Соболевым в 1936 году при решении задачи Коши для гиперболических уравнений, а в послевоенные годы французский математик Л. Шварц дал систематическое изложение теории обобщенных функций. Важную роль в формировании теории обобщенных функций сыграли работы Ж. Адамара, в которых в связи с изучением фундаментальных решений волновых уравнений рассмотрены сходящиеся интегралы, а также работы М. Рисса.

С другой стороны, к теории обобщенных функций вплотную подводит теория С. Бохнера преобразований Фурье функций степенного роста. Эти преобразования Фурье являются по существу обобщенными функциями и выступают у С. Бохнера как формальные производные непрерывных функций. Обобщенные функции необыкновенно быстро, буквально за два-три года, приобрели чрезвычайно широкую популярность. Достаточно указать хотя бы на тот факт, что количество математических работ, в которых встречается дельта-функция, возросло во много раз.

В дальнейшем теорию обобщенных функций интенсивно развивали многие математики, главным образом из-за потребностей математической физики. Теория обобщенных функций имеет многочисленные применения и все шире входит в обиход физика, математика и инженера.

Формально обобщенные функции определяются как линейные непрерывные функционалы над тем или иным линейным пространством основных функций . Основным пространством функций является, например, совокупность бесконечно дифференцируемых финитных функций, снабженная надлежащей сходимостью (или точнее топологией). При этом обычные локально суммируемые функции отождествляются с функционалами (регулярными обобщенными функциями) вида:

. (1)

Произвольная обобщенная функция определяется как функционал , задаваемый равенством:

. (2)

Следовательно, каждая обобщенная функция бесконечно дифференцируема. Равенство (2) в силу (1) есть не что иное, как обобщение формулы интегрирования по частям для дифференцируемых в обычном смысле функций , так что в этом случае оба понятия производной совпадают.

Сходимость на (линейном) множестве обобщенных функций вводится как слабая сходимость функционалов. Оказывается, что операция дифференцирования обобщенных функций непрерывна, а сходящаяся последовательность обобщенных функций разрешает почленное дифференцирование бесконечное число раз.

Вводятся и другие операции над обобщенными функциями, например свертка, преобразование Фурье и Лапласа. Теория этих операций приобретает наиболее простую и законченную форму в рамках понятия обобщенных функций, расширяющих возможности классического математического анализа. Поэтому использование обобщенные функции существенно расширяет круг рассматриваемых задач и приводит к значительным упрощениям, автоматизируя элементарные операции.

Примеры:

- -функция Дирака: , описывает плотность массы (заряда), сосредоточенной в точке , единичный импульс;

- функция Хевисайда: , при , , при , ; производная от этой функции равна единичному импульсу;

- плотность диполя момента в точке , ориентированного вдоль оси ;

- плотность простого слоя на поверхности с поверхностной плотностью ;

- плотность двойного слоя на поверхности с поверхностной плотностью момента диполей, ориентированных вдоль направления нормали ;

- свертка ньютонов, потенциал с плотностью , где - любая обобщенная функция (например, из первых пяти пунктов);

- общее решение уравнения колебаний струны задается формулой , где и любые обобщенные функции.