1.5 Обобщенные функция , отвечающие квадратичным формам с комплексными коэффициентами
До сих пор рассматривались исключительно квадратичные формы с вещественными коэффициентами. В этом пункте исследуется пространство всех квадратичных форм с комплексными коэффициентами.
Задачей является определение обобщенной функции , где - комплексное число. Однако в общем случае не будет однозначной аналитической функцией от . Поэтому в пространстве всех квадратичных форм выделяют «верхнюю полуплоскость» квадратичных форм с положительно определенной мнимой частью и определяют для них функцию . А именно, если квадратичная форма принадлежит этой «полуплоскости», то пологается , где . Такая функция является однозначной аналитической функцией от .
Можно сопоставить теперь функции обобщенную функцию :
, (13)
где интегрирование ведется по всему пространству. Интеграл (13) сходится при и является в этой полуплоскости аналитической функцией от . Продолжая аналитически эту функцию, определяется функционал для других значений .
Для квадратичных форм с положительно определенной мнимой частью находятся особые точки функций и вычисляются вычеты этих функций в особых точках.
Обобщенная функция аналитически зависит не только от , но и от коэффициентов квадратичной формы . Тем самым, является аналитической функцией в верхней «полуплоскости» всех квадратичных форм вида , где есть положительно определенная форма. Следовательно, однозначно определяется своими значениями на «мнимой полуоси», т. е. на множестве квадратичных форм вида , где - положительно определенная форма.
Yandex.RTB R-A-252273-3- Введение
- 1. Обобщенные функции
- 1.1 Основные понятия
- 1.2 Пространство обобщенных функций
- 1.3 Дифференциальные уравнения в обобщенных функциях
- 1.4 Свойства обобщенных производных
- 1.5 Обобщенные функция , отвечающие квадратичным формам с комплексными коэффициентами
- 2. Операции над обобщенными функциями
- 2.1 Свертка обобщенных функций
- 2.2 Преобразование Лапласа обобщенных функций
- 2.3 Преобразование Фурье обобщенных функций
- Заключение
- Методы решения задач многокритериальной оптимизации – метод обобщенного критерия (метод свертки).
- 3.3. Свертка функций
- 8.6 Интегральные уравнения типа «свертки».
- Свертка функций. Отыскание оригинала по изображению. Сверткой функций будем называть функцию .
- 15.Свертка
- 17.Обобщенные функции. Свертка. Функция корреляции.
- 17.Обобщенные функции. Свертка. Функция корреляции.
- Регуляризация решения уравнения типа свертки
- Итерационный оператор для уравнения типа свертки