Закони розподілу і числові характеристики випадкових величин.
Випадковою величиною називається змінна величина, що у результаті досліду може прийняти те чи інше значення: невідомо заздалегідь, яке саме.
Випадкові величини позначають великими буквами латинського алфавіту, а їхні можливі значення – відповідними малими буквами.
Означення. Випадкова величина X називається дискретною, якщо множина її значень або скінчена, або зчислена.
Означення. Випадкова величина X називається неперервною, якщо її значення знаходяться у скінченому або нескінченому проміжку числової осі .
Сукупність значень і відповідних ймовірностей називається законом розподілу дискретної випадкової величини.
Означення. Нехай X – випадкова величина і x – довільне дійсне число. Імовірність того, що X прийме значення, що менше ніж X, називається функцією розподілу випадкової величини X :
F(x)=P(X<x).
Функція розподілу має наступні властивості:
1.
2.
3. F(x) – не спадна функція на всій числовій осі.
4. .
Означення. Для неперервної випадкової величини існує така невід’ємна функція f(x), щільність розподілу ймовірностей, яка при всіх
<
Щільність розподілу ймовірностей має наступні властивості:
1. <x< .
2.
3. у точках неперервності функції f(x).
4. .
-
Содержание
- Теорія ймовірностей і
- Варіанти контрольних робіт
- Програма
- Тема 1. Основні поняття теорії ймовірностей
- Тема 2. Залежні й незалежні випадкові події. Основні формули множення й додавання ймовірностей
- Тема 3. Спроби за схемою бернуллі
- Тема 4. Одновимірні випадкові величини
- Тема 5. Багатовимірні випадкові величини
- Тема 11. Елементи математичної статистики. Вибірковий метод
- Тема 12. Статистичні оцінки параметрів генеральної сукупності. Статистичні гіпотези
- Тема 13. Елементи дисперсійного аналізу
- Тема 14. Елементи теорії регресії і кореляції
- Основні формули і означення
- Основні комбінаторні формули.
- Алгебра подій.
- Класичне означення ймовірності.
- Теореми множення і додавання ймовірностей.
- Формула повної ймовірності. Формула Байєса.
- Граничні теореми.
- Закони розподілу і числові характеристики випадкових величин.
- Числові характеристики випадкових величин.
- Основні закони розподілу.
- Питання до заліку
- Контрольні завдання
- 1. Класичне означення ймовірності.
- У задачах 1-5 знайти ймовірності подій, користуючись формулами комбінаторики.
- Геометричні ймовірності
- 3.Теореми додавання і множення ймовірностей
- 3.3.. З'ясувати, чи залежні події а і в. Обчислити р(а/в) та р (в/а).
- 4. Формула повної ймовірності. Формула Байєса.
- 5. Схема Бернуллі. Граничні теореми.
- 6. Дискретні випадкові величини. Література : [2] стор.52-79
- 6.2. Знайти закон розподілу випадкової величини х.
- 7.Неперервні випадкові величини. Література : [2] стор. 87-106
- 8. Основні закони дискретних випадкових величин.
- 9 . Основні закони неперервних випадкових величин.
- 10.Нормальний розподіл.
- Література: [2] стор. 109-114
- 11.Закон великих чисел
- Додаток 1. Основні поняття і формули
- Додаток 3.
- Література Основна література
- Додаткова література