tyipms_statsionar
Числові характеристики випадкових величин.
Означення. Математичним сподіванням дискретної випадкової величини називається число
Якщо випадкова величина приймає зчислену множину значень, то потрібна абсолютна збіжність ряду.
Означення. Математичним сподіванням неперервної випадкової величини X називається число
якщо інтеграл абсолютно сходиться.
Означення. Дисперсією випадкової величини X називається невід’ємне число D(x), обумовлене в такий спосіб
Дисперсію зручно обчислювати по формулі
Для неперервної випадкової величини дисперсія
або
-
Содержание
- Теорія ймовірностей і
- Варіанти контрольних робіт
- Програма
- Тема 1. Основні поняття теорії ймовірностей
- Тема 2. Залежні й незалежні випадкові події. Основні формули множення й додавання ймовірностей
- Тема 3. Спроби за схемою бернуллі
- Тема 4. Одновимірні випадкові величини
- Тема 5. Багатовимірні випадкові величини
- Тема 11. Елементи математичної статистики. Вибірковий метод
- Тема 12. Статистичні оцінки параметрів генеральної сукупності. Статистичні гіпотези
- Тема 13. Елементи дисперсійного аналізу
- Тема 14. Елементи теорії регресії і кореляції
- Основні формули і означення
- Основні комбінаторні формули.
- Алгебра подій.
- Класичне означення ймовірності.
- Теореми множення і додавання ймовірностей.
- Формула повної ймовірності. Формула Байєса.
- Граничні теореми.
- Закони розподілу і числові характеристики випадкових величин.
- Числові характеристики випадкових величин.
- Основні закони розподілу.
- Питання до заліку
- Контрольні завдання
- 1. Класичне означення ймовірності.
- У задачах 1-5 знайти ймовірності подій, користуючись формулами комбінаторики.
- Геометричні ймовірності
- 3.Теореми додавання і множення ймовірностей
- 3.3.. З'ясувати, чи залежні події а і в. Обчислити р(а/в) та р (в/а).
- 4. Формула повної ймовірності. Формула Байєса.
- 5. Схема Бернуллі. Граничні теореми.
- 6. Дискретні випадкові величини. Література : [2] стор.52-79
- 6.2. Знайти закон розподілу випадкової величини х.
- 7.Неперервні випадкові величини. Література : [2] стор. 87-106
- 8. Основні закони дискретних випадкових величин.
- 9 . Основні закони неперервних випадкових величин.
- 10.Нормальний розподіл.
- Література: [2] стор. 109-114
- 11.Закон великих чисел
- Додаток 1. Основні поняття і формули
- Додаток 3.
- Література Основна література
- Додаткова література