tyipms_statsionar
Тема 1. Основні поняття теорії ймовірностей
Предмет курсу, його зміст. Роль і місце курсу як теоретичної бази ймовірнісно-статистнчного моделювання, основ курсів «Математичне програмування», «Економетрія», «Економічний ризик і методи його вимірювання» та ін.
Класифікації подій на можливі, вірогідні та випадкові. Поняття елементарної та складної випадкової події, простір елементарних подій; операції над подіями; класичне визначення ймовірності випадкової події та її властивостей; елементи комбінаторики у теорії ймовірностей; аксіоми теорії ймовірностей та їх наслідки; геометрична ймовірність, статистична ймовірність.
Содержание
- Теорія ймовірностей і
- Варіанти контрольних робіт
- Програма
- Тема 1. Основні поняття теорії ймовірностей
- Тема 2. Залежні й незалежні випадкові події. Основні формули множення й додавання ймовірностей
- Тема 3. Спроби за схемою бернуллі
- Тема 4. Одновимірні випадкові величини
- Тема 5. Багатовимірні випадкові величини
- Тема 11. Елементи математичної статистики. Вибірковий метод
- Тема 12. Статистичні оцінки параметрів генеральної сукупності. Статистичні гіпотези
- Тема 13. Елементи дисперсійного аналізу
- Тема 14. Елементи теорії регресії і кореляції
- Основні формули і означення
- Основні комбінаторні формули.
- Алгебра подій.
- Класичне означення ймовірності.
- Теореми множення і додавання ймовірностей.
- Формула повної ймовірності. Формула Байєса.
- Граничні теореми.
- Закони розподілу і числові характеристики випадкових величин.
- Числові характеристики випадкових величин.
- Основні закони розподілу.
- Питання до заліку
- Контрольні завдання
- 1. Класичне означення ймовірності.
- У задачах 1-5 знайти ймовірності подій, користуючись формулами комбінаторики.
- Геометричні ймовірності
- 3.Теореми додавання і множення ймовірностей
- 3.3.. З'ясувати, чи залежні події а і в. Обчислити р(а/в) та р (в/а).
- 4. Формула повної ймовірності. Формула Байєса.
- 5. Схема Бернуллі. Граничні теореми.
- 6. Дискретні випадкові величини. Література : [2] стор.52-79
- 6.2. Знайти закон розподілу випадкової величини х.
- 7.Неперервні випадкові величини. Література : [2] стор. 87-106
- 8. Основні закони дискретних випадкових величин.
- 9 . Основні закони неперервних випадкових величин.
- 10.Нормальний розподіл.
- Література: [2] стор. 109-114
- 11.Закон великих чисел
- Додаток 1. Основні поняття і формули
- Додаток 3.
- Література Основна література
- Додаткова література