Примеры задач.
Постройте сечение куба плоскостью проходящей через точки, указанные на рисунке
Постройте сечение правильной четырехугольной пирамиды плоскостью, через точки, указанные на рисунке.
Постройте сечение правильной шестиугольной призмы плоскостью, проходящей через точки, указанные на рисунке.
Меньший куб поставлен на больший таким образом, что они имеют общую вершину и их грани параллельны. Постройте сечение полученной фигуры плоскостью, проходящей через три точки, лежащие на скрещивающихся ребрах меньшего куба.
Решение:
1)
-
А) проводим линию пересечения с гранью куба (АВ)
Б) проводим параллельную ей (АВ)на противолежащей грани (ЕС)
В) проводим ЕА
Г) проводим прямую BD||EA
Д) Соединяем D c C
Сечение (ABDCE) построено.
2)
-
А) проецируем на плоскость основания, путем центрального проецирования из вершины, точки В и С, получая точки: B’ и C’.
Б) пересекаем прямые B’C’ и BC, находим точку P’
В) пересекаем AP’ и D’C’, находим точку D”.
Г) пересекаем D”C и SD’, находим D
ABDC – сечение.
- 1. Пропедевтический курс геометрии в 5-6 классах.
- 2.Методика изучения геометрических построений в курсе геометрии.
- 3. Методика введения понятия вектора и изучения операций над векторами в курсе планиметрии.
- 4. Декартовы координаты. Координатный метод в курсе геометрии.
- 6. Понятие площади плоских фигур. Различные подходы к определению понятия площади.
- §4 Площади и объемы. П.18 Площадь
- Глава 7. Треугольники и четырехугольники.
- 7. Методика изучения геометрических построений в курсе стереометрии: изображение пространственных фигур, построение сечения многогранников плоскостью.
- Анализ учебника л.С. Атанасяна 10-11 кл. «Геометрия»
- Пересечение многогранников плоскостью.
- Примеры задач.
- 8. Методика изучения перпендикулярности прямых и плоскостей.
- 9.Методические подходы к изучению объемов многогранников.
- 10. Методические подходы к изучению объемов тел вращения (на примере учебников геометрии)
- Наиболее эффективный план изучения отрицательных и положительных чисел в курсе VI класса:
- 12. Иррациональные уравнения и неравенства. Способы их решения.
- 13. Роль и значение функций в школьном курсе математики. Общая последовательность изучения функций.
- 14. Методика изучения линейных и квадратичных функций.
- 15 . Методика изучения квадратных уравнений и неравенств
- 16. Методика изучения уравнений и неравенств, содержащий знак абсолютной величины.
- 17. Виды и методы решения текстовых задач
- Глава III. Степень с натуральным показателем. (10)
- Глава V. Формулы сокращенного умножения. (5)
- 18. Методика изучения тригонометрических функций в школьном курсе алгебры и начал анализа
- 19. Методика изучения тригонометрических уравнений и неравенств.
- Глава 3. Тригонометрические функции.
- §4. Тригонометрические уравнения
- Глава 1. Тригонометрические функции.
- §3. Решение тригонометрических уравнений и неравенств.
- Глава 6. Тригонометрические функции.
- §5. Тригонометрические уравнения и неравенства.
- 20. Методика изучения показательной и логарифмической функции.
- 21. Методика изучения показательных уравнений и неравенств.
- Глава 3. Показательные функции 10(I вариант) 9(iIвариант)
- 22. Методика изучения логарифмических уравнений и неравенств.
- 23. Формирование понятия производной.
- 24. Формирование понятия определенного и неопределенного интеграла.
- Глава VI. Элементы математического анализа – 36 часов. Из них на изучение интегралов 5-6 часов.
- 25. Основные цели введения элементов комбинаторики и теории вероятностей. Общая последовательность изучение данного раздела.