Первое достаточное условие экстремума.
Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.
Тогда
если при и при , то - точка максимума;
если при и при , то - точка минимума.
Другими словами:
если в точке функция непрерывна и в ней производная меняет знак с плюса на минус, то - точка максимума;
если в точке функция непрерывна и в ней производная меняет знак с минуса на плюс, то - точка минимума.
Алгоритм нахождения точек экстремума по первому признаку экстремума функции.
Находим область определения функции.
Находим производную функции на области определения.
Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума, проходя через эти точки, производная как раз может изменять свой знак).
Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.
Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.
Пример.
Найти экстремумы функции .
Решение.
Областью определения функции является все множество действительных чисел, кромеx=2.
Находим производную:
Нулями числителя являются точки x=-1 и x=5, знаменатель обращается в ноль при x=2. Отмечаем эти точки на числовой оси
Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 иx=6.
, следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично
Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.
Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.
В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .
В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .
Графическая иллюстрация.
Ответ:
.
ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .
Пример.
Найдите точки экстремума и экстремумы функции .
Решение.
Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:
Найдем производную функции:
В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:
В это же время, исходная функция является непрерывной в точке x=0 (смотрите разделисследование функции на непрерывность):
Найдем значения аргумента, при котором производная обращается в ноль:
Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6.
То есть,
Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .
Вычисляем соответствующие минимумы функции
Вычисляем соответствующие максимумы функции
Графическая иллюстрация.
Ответ:
.
Yandex.RTB R-A-252273-3- 1.Числовая последовательности и ее предел.
- 2.Способы задания функции.
- 1. Аналитический способ
- 2. Табличный способ
- 3. Графический способ
- 3.Предел функции. Односторонние пределы.
- Левый и правый пределы функции
- 4.Первый замечательный предел.
- 7.Производная. Геометрический и механический смысл производной
- 8.Таблица производных и правила дифференцирования
- 9.Возрастание и убывание функции
- Точки экстремума, экстремумы функции.
- Достаточные условия возрастания и убывания функции.
- Достаточные условия экстремума функции.
- Первое достаточное условие экстремума.
- Второй признак экстремума функции.
- Третье достаточное условие экстремума функции.
- 10. Экстремумы функции Определение экстремума
- Точки экстремума
- Задачи на нахождения экстремума функции
- 11.Производные высших порядков. Формула Тейлора
- Формула Тейлора
- Определённый интеграл
- 13. Геометрический смысл определенного интеграла.
- 14.Определение числового ряда. Сходимость ряда.
- 15.Признак сходимости Даламбера и Коши
- 17.Понятие суммы степенного ряда. Ряд Тейлора
- Определение
- Формула Тейлора для большого числа переменных
- 19.Частная производная
- Обозначение
- Геометрическая интерпретация
- Примеры
- 21.Дифференциальное уравнение
- Обыкновенные дифференциальные уравнения
- Порядок дифференциального уравнения
- Простейшие дифференциальные уравнения первого порядка
- Дифференциальные уравнения в частных производных
- Линейные и нелинейные дифференциальные уравнения
- Примеры