1.Числовая последовательности и ее предел.
Функция f(x) называется функцией целочисленного аргумента, если множество значений x, для которых она определена, является множеством всех натуральных чисел1, 2, 3,… Примером функции целочисленного аргумента может служить сумма n первых чисел натурального ряда. В данном случае
Числовой последовательностью называется бесконечное множество чисел
(1)
следующих одно за другим в определенном порядке и построенных по определенному закону, с помощью которого задается как функция целочисленного аргумента, т.е. .
Число А называется пределом последовательности (1), если для любого существует число , такое, что при выполняется неравенство . Если число А есть предел последовательности (1), то пишут
Числовая последовательность не может иметь более одного предела. Последовательность, имеющая предел, называется сходящейся.
Для сходящихся последовательностей имеют место теоремы:
если .
Пример 1.
Найти общий член последовательности 1, 4, 9, 16, 25, …
Р е ш е н и е : нетрудно видеть, что
и т.д.
Следовательно
Пример 2.
Найти общий член последовательности
Р е ш е н и е : не трудно видеть, что
,
, и т.д.
Следовательно:
Пример 3.
Доказать, что последовательность с общим членом имеет предел, равный нулю.
Р е ш е н и е : запишем ряд членов последовательности
и положим . Для всех членов данной последовательности, начиная с четвертого, выполняется равенство
Действительно
и т.д.
В данном случае N (см. определение предела последовательности) можно принять равным трем (или любому числу, больше трех), так как, если порядковый номер члена последовательности n больше трех, то выполняется неравенство
.
Положим теперь . Ясно, что для всех членов последовательности начиная с седьмого,
.
Теперь за N можно принять шесть (или любое число, большее шести). Если , то и т.д.
В данном случае можно найти общее выражение для числа N в зависимости от . Общий член данной последовательности . Задавшись произвольным положительным числом , мы должны в соответствии с определением предела, потребовать, чтобы при n > N выполнялось неравенство , если .
Решая неравенство относительно n, получаем . Итак, за N можно принять число (или любое большее число). Таким образом, мы показали, что для любого существует такое , чтопри , выполняется неравенство , а это и доказывает, что пределом последовательности является нуль.
Отметим, что в этой задаче члены последовательности приближались к своему пределу, оставаясь больше этого предела, как говорят, справа.
- 1.Числовая последовательности и ее предел.
- 2.Способы задания функции.
- 1. Аналитический способ
- 2. Табличный способ
- 3. Графический способ
- 3.Предел функции. Односторонние пределы.
- Левый и правый пределы функции
- 4.Первый замечательный предел.
- 7.Производная. Геометрический и механический смысл производной
- 8.Таблица производных и правила дифференцирования
- 9.Возрастание и убывание функции
- Точки экстремума, экстремумы функции.
- Достаточные условия возрастания и убывания функции.
- Достаточные условия экстремума функции.
- Первое достаточное условие экстремума.
- Второй признак экстремума функции.
- Третье достаточное условие экстремума функции.
- 10. Экстремумы функции Определение экстремума
- Точки экстремума
- Задачи на нахождения экстремума функции
- 11.Производные высших порядков. Формула Тейлора
- Формула Тейлора
- Определённый интеграл
- 13. Геометрический смысл определенного интеграла.
- 14.Определение числового ряда. Сходимость ряда.
- 15.Признак сходимости Даламбера и Коши
- 17.Понятие суммы степенного ряда. Ряд Тейлора
- Определение
- Формула Тейлора для большого числа переменных
- 19.Частная производная
- Обозначение
- Геометрическая интерпретация
- Примеры
- 21.Дифференциальное уравнение
- Обыкновенные дифференциальные уравнения
- Порядок дифференциального уравнения
- Простейшие дифференциальные уравнения первого порядка
- Дифференциальные уравнения в частных производных
- Линейные и нелинейные дифференциальные уравнения
- Примеры