Формула Тейлора
Формула Тейлора показывает поведение функции в окрестности некоторой точки. Формула Тейлора функции часто используется при доказательстве теорем в дифференциальном исчислении.
Формула Тейлора
, где Rn(x) - остаточный член формулы Тейлора.
Остаточный член формулы Тейлора
В форме Лагранжа:
В форме Коши:
12.Неопределенный и определенный интегралы
Неопределённый интеграл.
Определение. Функция F(x) называется первообразной для функции f(x) на интервале X=(a,b) (конечном или бесконечном), если в каждой точке этого интервала f(x) является производной дляF(x), т.е. . Из этого определения следует, что задача нахождения первообразной обратна задаче дифференцирования: по заданной функции f(x ) требуется найти функцию F(x), производная которой равна f(x). Первообразная определена неоднозначно: для функции первообразными будут и функция arctg x, и функция arctg x-10: . Для того, чтобы описать все множество первообразных функции f(x), рассмотрим Свойства первообразной.
Если функция F(x) - первообразная для функции f(x) на интервале X, то функция f(x) + C, где C - произвольная постоянная, тоже будет первообразной для f(x) на этом интервале. (Док-во: ).
Если функция F(x) - некоторая первообразная для функции f(x) на интервале X=(a,b), то любая другая первообразная F1(x) может быть представлена в виде F1(x) = F(x) + C, где C - постоянная на X функция.
Из этих свойств следует, что если F(x) - некоторая первообразная функции f(x) на интервале X, то всё множество первообразных функции f(x) (т.е. функций, имеющих производную f(x) и дифференциал f(x) dx) на этом интервале описывается выражением F(x) + C, где C - произвольная постоянная.
Неопределённый интеграл и его свойства. Определение. Множество первообразных функции f(x) называется неопределённым интегралом от этой функции и обозначается символом . Как следует из изложенного выше, если F(x) - некоторая первообразная функции f(x), то , где C - произвольная постоянная. Функцию f(x) принято называть подынтегральной функцией, произведение f(x) dx - подынтегральным выражением. Свойства неопределённого интеграла, непосредственно следующие из определения:
.
(или ).
Таблица неопределённых интегралов.
1 | . | 11 | . |
2 | . | 12 | . |
3 | (). | 13 | . |
4 | . | 14 | . |
5 | ; . | 15 | . |
6 | . | 16 | |
7 | . | 17 | . |
8 | . | 18 | . |
9 | . | 19 | . |
10 | . | 20 | ; . |
В формулах 14, 15, 16, 19 предполагается, что a>0. Каждая из формул таблицы справедлива на любом интервале, на котором непрерывна подынтегральная функция. Все эти формулы можно доказать дифференцированием правой части. Докажем, например, формулу 4: если x > 0, то ; если x < 0, то . Простейшие правила интегрирования.
()
Yandex.RTB R-A-252273-3
- 1.Числовая последовательности и ее предел.
- 2.Способы задания функции.
- 1. Аналитический способ
- 2. Табличный способ
- 3. Графический способ
- 3.Предел функции. Односторонние пределы.
- Левый и правый пределы функции
- 4.Первый замечательный предел.
- 7.Производная. Геометрический и механический смысл производной
- 8.Таблица производных и правила дифференцирования
- 9.Возрастание и убывание функции
- Точки экстремума, экстремумы функции.
- Достаточные условия возрастания и убывания функции.
- Достаточные условия экстремума функции.
- Первое достаточное условие экстремума.
- Второй признак экстремума функции.
- Третье достаточное условие экстремума функции.
- 10. Экстремумы функции Определение экстремума
- Точки экстремума
- Задачи на нахождения экстремума функции
- 11.Производные высших порядков. Формула Тейлора
- Формула Тейлора
- Определённый интеграл
- 13. Геометрический смысл определенного интеграла.
- 14.Определение числового ряда. Сходимость ряда.
- 15.Признак сходимости Даламбера и Коши
- 17.Понятие суммы степенного ряда. Ряд Тейлора
- Определение
- Формула Тейлора для большого числа переменных
- 19.Частная производная
- Обозначение
- Геометрическая интерпретация
- Примеры
- 21.Дифференциальное уравнение
- Обыкновенные дифференциальные уравнения
- Порядок дифференциального уравнения
- Простейшие дифференциальные уравнения первого порядка
- Дифференциальные уравнения в частных производных
- Линейные и нелинейные дифференциальные уравнения
- Примеры