15.Признак сходимости Даламбера и Коши
Жан Лерон Даламбер – это знаменитый французский математик 18-го века. Вообще, Даламбер специализировался на дифференциальных уравнениях и на основании своих исследований занимался баллистикой, чтобы у Его Величества лучше летали пушечные ядра. Заодно и про числовые ряды не забыл, не зря потом шеренги наполеоновских войск так четко сходились и расходились.
Перед тем как сформулировать сам признак, рассмотрим важный вопрос: Когда нужно применять признак сходимости Даламбера?
Сначала начнем с повторения. Вспомним случаи, когда нужно применять самый ходовойпредельный признак сравнения. Предельный признак сравнения применяется тогда, когда в общем члене ряда: 1) В знаменателе находится многочлен. 2) Многочлены находятся и в числителе и в знаменателе. 3) Один или оба многочлена могут быть под корнем.
Основные же предпосылки для применения признака Даламбера следующие:
1) В общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например, , , и так далее. Причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует.
2) В общий член ряда входит факториал. С факториалами мы скрестили шпаги ещё на уроке Числовая последовательность и её предел. Впрочем, не помешает снова раскинуть скатерть-самобранку: ……
! При использовании признака Даламбера нам как раз придется расписывать факториал подробно. Как и в предыдущем пункте, факториал может располагаться вверху или внизу дроби.
3) Если в общем члене ряда есть «цепочка множителей», например, . Этот случай встречается редко, но! При исследовании такого ряда часто допускают ошибку – см. Пример 6.
Вместе со степенями или (и) факториалами в начинке ряда часто встречаются многочлены, это не меняет дела – нужно использовать признак Даламбера.
Кроме того, в общем члене ряда может встретиться одновременно и степень и факториал; может встретиться два факториала, две степени, важно чтобы там находилось хоть что-тоиз рассмотренных пунктов – и это как раз предпосылка для использования признака Даламбера.
Признак Даламбера: Рассмотрим положительный числовой ряд . Если существует предел отношения последующего члена к предыдущему: , то: а) При ряд сходится. В частности, ряд сходится при . б) При ряд расходится. В частности, ряд расходится при . в) При признак не дает ответа. Нужно использовать другой признак. Чаще всего единица получается в том случае, когда признак Даламбера пытаются применить там, где нужно использовать предельный признак сравнения.
У кого до сих пор проблемы с пределами или недопонимание пределов, обратитесь к урокуПределы. Примеры решений. Без понимания предела и умения раскрывать неопределенность дальше, к сожалению, не продвинуться.
Огюстен Луи Коши – еще более знаменитый французский математик. Биографию Коши вам может рассказать любой студент технической специальности. В самых живописных красках. Не случайно эта фамилия высечена на первом этаже Эйфелевой башни.
Признак сходимости Коши для положительных числовых рядов чем-то похож на только что рассмотренный признак Даламбера.
Радикальный признак Коши: Рассмотрим положительный числовой ряд . Если существует предел: , то: а) При ряд сходится. В частности, ряд сходится при . б) При ряд расходится. В частности, ряд расходится при . в) При признак не дает ответа. Нужно использовать другой признак. Интересно отметить, что если признак Коши не даёт нам ответа на вопрос о сходимости ряда, то признак Даламбера нам тоже не даст ответа. Но если признак Даламбера не даёт ответа, то признак Коши вполне может «сработать». То есть, признак Коши является в этом смысле более сильным признаком.
Когда нужно использовать радикальный признак Коши? Радикальный признак Коши обычно использует в тех случаях, когда общий член ряда ПОЛНОСТЬЮ находится в степени, зависящей от «эн». Либо когда корень «хорошо» извлекается из общего члена ряда. Есть еще экзотические случаи, но ими голову забивать не будем.
16. Несобственные интегралы |
|
Определенный интеграл ∫abf(x)dx называется несобственным интегралом, если выполняется, по крайней мере, одно из следующих условий:
Бесконечные пределы интегрирования Пусть f(x) является непрерывной функцией в интервале [a,∞). Несобственный интеграл определяется через предел следующим образом: ∫a∞f(x)dx=limn→∞∫anf(x)dx. Рассмотрим также случай, когда функция f(x) непрерывна в интервале (−∞,b]. В этом случае несобственный интеграл определяется как ∫−∞bf(x)dx=limn→−∞∫nbf(x)dx. Если указанные выше пределы существуют и конечны, то говорят что несобственные интегралы сходятся. В противном случае интегралы расходятся. Пусть f(x) является непрерывной функцией на множестве действительных чисел. Тогда справедливо соотношение ∫−∞∞f(x)dx=∫−∞cf(x)dx+∫c∞f(x)dx. Если для некоторого действительного числа c оба интеграла в правой части сходятся, то говорят, что интеграл ∫−∞∞f(x)dx также сходится; в противном случае он расходится. Теоремы сравнения Пусть f(x) и g(x) является непрерывными функциями в интервале [a,∞). Предположим, что 0≤g(x)≤f(x) для всех x в интервале [a,∞). Тогда справедливы следующие утверждения:
Интеграл от разрывной функции Пусть функция f(x) непрерывна в интервале [a,b), но имеет разрыв в точке x=b. В этом случаенесобственный интеграл определяется в виде ∫abf(x)dx=limτ→0+∫ab−τf(x)dx. Аналогично можно рассмотреть случай, когда функция f(x) непрерывна в интервале (a,b], но имеет разрыв при x=a. Тогда ∫abf(x)dx=limτ→0+∫a+τbf(x)dx. Если приведенные выше пределы существуют и конечны, то говорят, что соответствующие несобственные интегралы сходятся. В противном случае они считаются расходящимися. Пусть f(x) непрерывна для всех действительных x в интервале [a,b], за исключением некоторой точки c∈(a,b). Тогда справедливо соотношение ∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx, и говорят, что несобственный интеграл ∫abf(x)dx сходится, если оба интеграла в правой части верхнего равенства сходятся. В противном случае несобственный интеграл расходится. |
- 1.Числовая последовательности и ее предел.
- 2.Способы задания функции.
- 1. Аналитический способ
- 2. Табличный способ
- 3. Графический способ
- 3.Предел функции. Односторонние пределы.
- Левый и правый пределы функции
- 4.Первый замечательный предел.
- 7.Производная. Геометрический и механический смысл производной
- 8.Таблица производных и правила дифференцирования
- 9.Возрастание и убывание функции
- Точки экстремума, экстремумы функции.
- Достаточные условия возрастания и убывания функции.
- Достаточные условия экстремума функции.
- Первое достаточное условие экстремума.
- Второй признак экстремума функции.
- Третье достаточное условие экстремума функции.
- 10. Экстремумы функции Определение экстремума
- Точки экстремума
- Задачи на нахождения экстремума функции
- 11.Производные высших порядков. Формула Тейлора
- Формула Тейлора
- Определённый интеграл
- 13. Геометрический смысл определенного интеграла.
- 14.Определение числового ряда. Сходимость ряда.
- 15.Признак сходимости Даламбера и Коши
- 17.Понятие суммы степенного ряда. Ряд Тейлора
- Определение
- Формула Тейлора для большого числа переменных
- 19.Частная производная
- Обозначение
- Геометрическая интерпретация
- Примеры
- 21.Дифференциальное уравнение
- Обыкновенные дифференциальные уравнения
- Порядок дифференциального уравнения
- Простейшие дифференциальные уравнения первого порядка
- Дифференциальные уравнения в частных производных
- Линейные и нелинейные дифференциальные уравнения
- Примеры