Определённый интеграл
Определение определённого интеграла. Пусть на отрезке [a,b] задана функция y = f(x). Разобьём отрезок [a,b] произвольным образом на n частей точками [x0 , x1], [x1 , x2], …, [xi-1 ,xi], …, [xn-1 , xn]; длину i-го отрезка обозначим : ; максимальную из длин отрезков обозначим . На каждом из отрезков [xi-1 , xi] выберем произвольную точку и составим сумму . Сумма называется интегральной суммой. Если существует (конечный) предел последовательности интегральных сумм при , не зависящий ни от способа разбиения отрезка [a,b]на части [xi-1 , xi], ни от выбора точек , то функция f(x) называется интегрируемой по отрезку [a,b], а этот предел называется определённым интегралом от функции f(x) по отрезку [a,b] и обозначается . Функция f(x), как и в случае неопределённого интеграла, называется подынтегральной, числа a и b - соответственно, нижним и верхним пределами интегрирования. Кратко определение иногда записывают так: . В этом определении предполагается, что b> a. Для других случаев примем, тоже по определению: Если b=a, то ; еслиb<a, то . Свойства определённого интеграла. 1. Линейность. Если функции f(x), g(x) интегрируемы по отрезку [a,b] , то по этому отрезку интегрируема их линейная комбинация A f(x) + B g(x) (A, B = const), и . 2. Аддитивность. Если y = f(x) интегрируема по отрезку [a,b] и точка c принадлежит этому отрезку, то . При формулировании следующих свойств предполагаем, что b > a. 3. Интеграл от единичной функции ( f(x) = 1). Если f(x) = 1, то .
Вычисление определённого интеграла. Формула Ньютона-Лейбница. Если f(x) непрерывна на отрезке [a, b], и F(x) - некоторая первообразная функции , то . Пример применения формулы Ньютона-Лейбница: . Формула интегрирования по частям для определённого интеграла. Если u(x), v(x) - непрерывно дифференцируемые функции, то Пример:.
Yandex.RTB R-A-252273-3- 1.Числовая последовательности и ее предел.
- 2.Способы задания функции.
- 1. Аналитический способ
- 2. Табличный способ
- 3. Графический способ
- 3.Предел функции. Односторонние пределы.
- Левый и правый пределы функции
- 4.Первый замечательный предел.
- 7.Производная. Геометрический и механический смысл производной
- 8.Таблица производных и правила дифференцирования
- 9.Возрастание и убывание функции
- Точки экстремума, экстремумы функции.
- Достаточные условия возрастания и убывания функции.
- Достаточные условия экстремума функции.
- Первое достаточное условие экстремума.
- Второй признак экстремума функции.
- Третье достаточное условие экстремума функции.
- 10. Экстремумы функции Определение экстремума
- Точки экстремума
- Задачи на нахождения экстремума функции
- 11.Производные высших порядков. Формула Тейлора
- Формула Тейлора
- Определённый интеграл
- 13. Геометрический смысл определенного интеграла.
- 14.Определение числового ряда. Сходимость ряда.
- 15.Признак сходимости Даламбера и Коши
- 17.Понятие суммы степенного ряда. Ряд Тейлора
- Определение
- Формула Тейлора для большого числа переменных
- 19.Частная производная
- Обозначение
- Геометрическая интерпретация
- Примеры
- 21.Дифференциальное уравнение
- Обыкновенные дифференциальные уравнения
- Порядок дифференциального уравнения
- Простейшие дифференциальные уравнения первого порядка
- Дифференциальные уравнения в частных производных
- Линейные и нелинейные дифференциальные уравнения
- Примеры