Билет №14 Элементы теории множеств Число элементов в декартовом произведении конечных множеств
В конце 19 века в математической науки возникла необходимость уточнить смысл понятий функция, непрерывность и т.д. В результате в конце 19 века возникла новая область математики – теория множеств, создал ее немецкий математик Георг Кантор. Теория множеств стала фундаментом всей математики.
Декартовым произведением множеств АиВ называется множество всех пар, первая компонента которых принадлежит множеству А, а вторая компонента принадлежит множеству В.
Декартовым произведением множеств А и В обозначают АхВ.
Используя это обозначение, определение декартова произведения можно записать так: АхВ={(x;y)|x(A и у(В}.
Например: А={m;p}, B={e,f,k}.
Операцию нахождения декартова произведения множеств называют декартовым умножением
Декартовы произведения АхВ иВхА состоят из различных элементов, то декартово умножение множеств А и В свойством коммутативности не обладает.
Декартовым произведением множеств А1,А2,…,Аn называется множество всех кортежей длины n, первая компонента которых принадлежит множеству А1, вторая множеству А2,…,n-множеству Аn.
Декартого произведение можно представит в виде таблицы или при помощи графа.
В | 3 | 5 |
1 | (1,3) | (1,5) |
2 | (2,3) | (2,3) |
3 | (3,3) | (3,3) |
1
3
5
3
5
- Билет №1 Объем и содержание понятия. Отношения между понятиями.
- Отношение рода и вида между понятиями:
- Билет №2 Объем и содержание понятия. Определение понятий
- Билет №3 Математические предложения. Высказывания и высказывательные формы Математические предложения
- Билет №4 Математические предложения. Конъюнкция и дизъюнкция высказываний Математические предложения
- Билет №5 Математические предложения Конъюнкция и дизъюнкция высказывательных форм Математические предложения
- Билет №6 Математические предложения. Отрицание высказывании и высказывательных форм Математические предложения
- Билет №7 Математические предложения. Отношения следования и равносильности между предложениями Математические предложения
- Билет №8 Математические предложения. Структура теоремы. Виды теорем. Математические предложения
- Виды теорем:
- Билет №9 Математическое доказательство. Умозаключение и их виды Математическое доказательство
- Билет №10 Математическое доказательство. Способы математического доказательства Математическое доказательство
- Косвенное доказательство: метод от противного
- Билет №11 Элементы теории множеств. Понятие множества и элемента множества
- Билет №12 Элементы теории множеств Пересечение и объединение множеств
- Билет №13 Элементы теории множеств Вычитание множеств и дополнение множества
- Дополнение множеств
- Билет №14 Элементы теории множеств Число элементов в декартовом произведении конечных множеств
- Билет №15 Элементы теории множеств. Соответствия между элементами двух множест
- Взаимно однозначные соответствия
- Билет 16 Элементы теории множеств отношения между элементами одного множества
- Билет № 17 Понятие величины и ее измерение
- Основные положения однородных величин:
- Билет № 19 Этапы развития понятий натурального числа и нуля
- Билет № 20 Аксиоматическое построение вычитание и деление.
- Билет 21 Делимость натуральных чисел
- Признаки делимости:
- Теоретико-множественный смысл суммы.
- Теоретико-множественный смысл разности:
- Теоретико-множественный смысл произведения.
- Билет 23 Системы счисления
- Алгоритм вычитания Вычитание основывается на:
- Правила вычетания:
- Алгоритм умножения:
- Правила умножения:
- Алгоритм деления.
- Билет 24 Понятие текстовой задачи и процесса ее решения
- Билет № 25 Методы и способы решения текстовых задач
- 2 Способ
- Выделяются три этапа:
- Билет №26 Комбинаторные задачи и их решение
- Билет №27 Из истории развития геометрии
- Билет №28 Основные свойства геометрических фигур на плоскости и в пространстве
- Параллельные и перпендикулярные прямые.
- Треугольники
- Четырехугольники
- Многоугольники
- Окружность
- Билет№29 Этапы решения задачи на построение
- Понятие площади фигуры и ее измерение.
- Билет № 31 Аксиоматическое построение сложение и умножение.