Метод прогонки.
Метод прогонки является модификацией метода Гаусса для частного случая с трёхдиагональной матрицей. Такие системы возникают при численном решении уравнений математической физики.
Другой пример: коэффициенты сплайна третьей степени находятся путём решения систем с трёхдиагональной матрицей.
В методе прогонки объём вычислений растет пропорционально . Запишем систему уравнений, которая решается методом прогонки.
Общий вид уравнений с трёхдиагональной матрицей
Решение системы с трёхдиагональной матрицей, как и в методе Гаусса, состоит из двух этапов. Прямой прогонки и обратной прогонки.
Рассмотрим первый этап (прямой ход метода прогонки)
Для этого неизвестный выражаем через , таким образом:
,
где , - неизвестные пока (прогоночные) коэффициенты. На первом как раз и находится эти коэффициенты. Сравним это уравнение при с первым уравнением системы
И из сравнения находим, что
Заменим i-ое уравнение системы, выразив в нём с помощью
Сравнивая с
Получаем рекуррентные соотношения для нахождения прогоночных коэффициентов.
После того как найдены все прогоночные коэффициенты в результате прямого хода метода, находят . Для этого сравниваем последние уравнения системы с последним прогоночным соотношением. В результате получаем систему из двух уравнений с двумя неизвестными.
Отсюда
Это фактически начало обратного хода метода прогонки.
После этого последовательно находим …….и т.д. вплоть до .
Метод 16
- Новочеркасск 2008 Содержание
- Тема №1 Модели и моделирование.
- Погрешности численных методов.
- Тема №2 Аппроксимация функций.
- Интерполяционная формула Лагранжа.
- Сплайны
- Сплайны третьей степени
- Метод наименьших квадратов
- Тема №3 Решение нелинейных уравнений.
- Метод половинного деления.
- Метод простых итераций.
- Метод Хорд
- Метод Ньютона (касательных).
- Тема №4 Решение систем линейных уравнений.
- 1) Прямые
- 2) Итерационные
- Метод Гаусса.
- Метод прогонки.
- Уточнение решения (итерационный метод).
- Метод Гаусса-Зейделя.
- Тема №5 Решение систем не линейных уравнений.
- Простой Итерации
- Метод Ньютона для систем уравнений.
- Метод возмущения параметров.
- Тема №6 Численное интегрирование.
- Метод прямоугольников.
- Метод трапеции
- Метод Симпсона.
- Метод Гаусса.
- Метод Монте-Карло.
- Метод Монте-Карло для вычисления кратных интегралов.
- Тема №7 Решение обыкновенных дифференциальных уравнений (оду).
- Метод Эйлера.
- Модифицированный метод Эйлера.
- Метод Рунге – Кутта.
- Метод Рунге-Кутта для решения систем оду
- Метод Рунге-Кутта для оду высших порядков.
- Метод стрельбы.
- Метод конечных разностей (мкр) (метод сеток).
- Тема №8 Решение дифференциальных уравнений с частными производными.
- Уравнение теплопроводности.
- Явная разностная схема для уравнения теплопроводности.
- Неявная разностная схема для уравнения теплопроводности.
- Тема №9 Задачи оптимизации.
- Метод половинного деления.
- Метод золотого сечения.
- Метод покоординатного подъёма (спуска).
- Метод градиентного подъёма (спуска).
- Метод наискорейшего подъёма.
- Тема №10 Задания для самостоятельной проработки. Транспортная задача.
- Задача о ресурсах.
- Волновое уравнение.
- Уравнение Лапласа.