Задача о ресурсах.
В распоряжении бригады имеются следующие ресурсы: 300 кг металла, 100 м2 стекла, 160 чел.-ч. (человеко-часов) рабочего времени. Бригаде поручено изготовлять два наименования изделий: А и Б. Цена одного изделия А 1 тыс. р., для его изготовления необходимо 4 кг металла, 2 м2 стекла и 2 чел.-ч. рабочего времени. Цена одного изделия Б 1.2 тыс. р., для его изготовления необходимо 5 кг металла, 1 м2 стекла и 3 чел.-ч. рабочего времени. Требуется так спланировать объем выпуска продукции, чтобы ее стоимость была максимальной.
Сначала сформулируем задачу математически. Обозначим через количество изделий А и Б, которое необходимо запланировать (т. е. это искомые величины). Имеющиеся ресурсы сырья и рабочего времени зададим в виде ограничений-неравенств:
Полная стоимость запланированной к производству продукции выражается формулой
Таким образом, мы имеем задачу линейного программирования, которая состоит в определении оптимальных значений проектных параметров являющихся целыми неотрицательными числами, удовлетворяющих линейным неравенствам и дающих максимальное значение линейной целевой функции.
Введём дополнительные переменные , такие, чтобы при их прибавлении к левым частям соотношений неравенства превращались в равенства. Тогда ограничения примут вид
При этом очевидно, что ,,. Заметим, что введение дополнительных неизвестных не повлияло на вид целевой функции, которая зависит только от параметров .Фактически будут указывать остатки ресурсов, не использованные в производстве.
Выразим через свободные переменные . Получим
В качестве опорного решения возьмем такое, которое соответствует нулевым значениям свободных параметров:
Этому решению соответствует нулевое значение целевой функции
Положим , и будем увеличивать переменную до тех пор, пока переменные остаются положительными. Отсюда следует, что можно увеличить до значения = 50, поскольку при большем его значении переменная х4 станет отрицательной.
Таким образом, полагая = 50, х2 = 0, получаем новое решение
Значение целевой функции при этом будет равно
Новое решение лучше, поскольку значение целевой функции уменьшилось по сравнению с предыдущим.
Следующий шаг начнем с выбора нового базиса. Примем ненулевые переменные в качестве базисных, а нулевые переменные в качестве свободных.
Получим
Выражение для целевой функций запишем через свободные параметры. Получим
Отсюда следует, что значение целевой функции по сравнению с предыдущей можно уменьшить за счет увеличения х2 поскольку коэффициент при этой переменной в отрицательный. При этом увеличение недопустимо, поскольку это привело бы к возрастанию целевой функции; поэтому пусть =0.
Быстрее всех нулевого значения достигнет переменная при х2 = 30. Дальнейшее увеличение х2 поэтому невозможно. Следовательно, получаем новое опорное решение, соответствующее значениям х2 = 30, = 0 и тогда
При этом значение целевой функции равно
Покажем, что полученное решение является оптимальным. Для проведения следующего шага ненулевые переменные ,,, нужно принять в качестве базисных, а нулевые переменные х4, х5 — в качестве свободных переменных. В этом случае целевую функцию можно записать в виде
Поскольку коэффициенты при , положительные, то при увеличении этих параметров целевая функция возрастает. Следовательно, =71 является оптимальным.
Таким образом, ответ на поставленную задачу об использовании ресурсов следующий: для получения максимальной суммарной стоимости продукции при заданных ресурсах необходимо запланировать изготовление изделий А в количестве 35 штук и изделий Б в количестве 30 штук. Суммарная стоимость продукции равна 71 тыс. р. При этом все ресурсы стекла и рабочего времени будут использованы, а металла останется 10 кг.
- Новочеркасск 2008 Содержание
- Тема №1 Модели и моделирование.
- Погрешности численных методов.
- Тема №2 Аппроксимация функций.
- Интерполяционная формула Лагранжа.
- Сплайны
- Сплайны третьей степени
- Метод наименьших квадратов
- Тема №3 Решение нелинейных уравнений.
- Метод половинного деления.
- Метод простых итераций.
- Метод Хорд
- Метод Ньютона (касательных).
- Тема №4 Решение систем линейных уравнений.
- 1) Прямые
- 2) Итерационные
- Метод Гаусса.
- Метод прогонки.
- Уточнение решения (итерационный метод).
- Метод Гаусса-Зейделя.
- Тема №5 Решение систем не линейных уравнений.
- Простой Итерации
- Метод Ньютона для систем уравнений.
- Метод возмущения параметров.
- Тема №6 Численное интегрирование.
- Метод прямоугольников.
- Метод трапеции
- Метод Симпсона.
- Метод Гаусса.
- Метод Монте-Карло.
- Метод Монте-Карло для вычисления кратных интегралов.
- Тема №7 Решение обыкновенных дифференциальных уравнений (оду).
- Метод Эйлера.
- Модифицированный метод Эйлера.
- Метод Рунге – Кутта.
- Метод Рунге-Кутта для решения систем оду
- Метод Рунге-Кутта для оду высших порядков.
- Метод стрельбы.
- Метод конечных разностей (мкр) (метод сеток).
- Тема №8 Решение дифференциальных уравнений с частными производными.
- Уравнение теплопроводности.
- Явная разностная схема для уравнения теплопроводности.
- Неявная разностная схема для уравнения теплопроводности.
- Тема №9 Задачи оптимизации.
- Метод половинного деления.
- Метод золотого сечения.
- Метод покоординатного подъёма (спуска).
- Метод градиентного подъёма (спуска).
- Метод наискорейшего подъёма.
- Тема №10 Задания для самостоятельной проработки. Транспортная задача.
- Задача о ресурсах.
- Волновое уравнение.
- Уравнение Лапласа.