Уравнение Лапласа.
Многие стационарные физические задачи (исследования потенциальных течений жидкости, определение формы нагруженной мембраны, задачи теплопроводности и диффузии в стационарных случаях и др.) сводятся к решению уравнения Пуассона вида
При F(x, у, z) = 0, уравнение Пуассона называют уравнением Лапласа. Для простоты будем рассматривать двумерное уравнение Лапласа
Решение этого уравнения будем искать для некоторой ограниченной области G изменения независимых переменных х, у. Границей области G является замкнутая линия L. Для полной формулировки краевой задачи кроме уравнения Лапласа нужно задать граничное условие на границе L. Примем его в виде
Задача, состоящая в решении уравнения Лапласа (или Пуассона) при заданных значениях искомой функции на границе расчетной области, называется задачей Дирихле.
Одним из способов решения стационарных эллиптических задач, в том числе и краевой задачи, является их сведение к решению некоторой фиктивной нестационарной задачи (гиперболической или параболической), найденное решение которой при достаточно больших значениях времени t близко к решению исходной задачи. Такой способ решения называется методом установления.
Поскольку решение U(x,y) уравнения Лапласа не зависит от времени, то можно в это уравнение добавить равный нулю (при точном решении) член . Тогда уравнение примет вид
Это — известное нам уравнение теплопроводности, для которого мы уже строили разностные схемы. Остается только задать начальное условие. Его можно принять практически в произвольном виде, согласованном с граничными условиями. Положим
Граничное условие при этом остается стационарным, т. е. не зависящим от времени.
Процесс численного решения такого уравнения состоит в переходе при от произвольного значения к искомому стационарному решению. Счет ведется до выхода решения на стационарный режим. Естественно, ограничиваются решением при некотором достаточно большом t, если искомые значения на двух последовательных слоях совпадают с заданной степенью точности.
Метод установления фактически представляет итерационный процесс, причем на каждой итерации значения искомой функции получаются путем численного решения некоторой вспомогательной задачи. В теории разностных схем показано, что этот итерационный процесс сходится к решению исходной задачи, если такое стационарное решение существует.
Другой способ решения задачи Дирихле состоит в построении разностной схемы путем аппроксимации уравнения Лапласа. Введем в прямоугольной области G сетку с помощью координатных прямых х = const и у = const. Примем, для простоты значения шагов по переменным, х и у равными h (предполагается, что стороны области G соизмеримы). Значения функции U в узлах заменим значениями сеточной функции Тогда, аппроксимируя в уравнении Лапласа вторые производные с помощью отношений конечных разностей, получим разностное уравнение.
С помощью данного уравнения можно записать систему линейных алгебраических уравнений относительно значений сеточной функции в узлах в виде
Значения сеточной функции в узлах, расположенных на границе расчетной области, могут быть найдены из граничного условия:
Перейдем теперь к решению полученной системы. Каждое уравнение системы (за исключением тех, которые соответствуют узлам, расположенным вблизи границ) содержит пять неизвестных. Одним из наиболее распространенных методов решения этой системы линейных уравнений является итерационный метод. Каждое из уравнений записываем в виде, разрешенном относительно значения в центральном узле:
В ряде случаев уравнение с частными производными удобно привести к системе обыкновенных дифференциальных уравнений, в которых оставлены производные искомой функции лишь по одной переменной.
Такой способ можно использовать и для решения уравнения Лапласа. Пусть требуется решить для него задачу Дирихле в прямоугольнике ABCD. Разобьем прямоугольник на полосы с помощью прямых, параллельных оси х. Для определенности проведем три отрезка , которые разделят прямоугольник на четыре полосы постоянной ширины h. Решение U задачи Дирихле приближенно заменим набором функций , каждая из которых определена на отрезке U и зависит только от одной переменной х, т. е. = для =1,2,3. На отрезках значения заданы граничными условиями.
Построим разностную схему, для определения значений функций . Аппроксимируя в уравнении вторую производную по у, с помощью отношения конечных разностей, получаем
Таким образом, решение задачи Дирихле сводятся к решению краевой задачи для системы обыкновенных дифференциальных уравнений относительно значений искомой функции вдоль прямых . В этом состоит метод прямых. Граничные условия при х=а, х = b можно получить из уравнений
Метод прямых широко, используется для решения нестационарных задач. Например, если имеются две независимые переменные х, t, а искомый параметр является гладкой функцией переменной х, то дискретизация вводится по этой переменной. Тогда исходная задача заменяется задачей Коши для системы обыкновенных дифференциальных уравнений вида
- Новочеркасск 2008 Содержание
- Тема №1 Модели и моделирование.
- Погрешности численных методов.
- Тема №2 Аппроксимация функций.
- Интерполяционная формула Лагранжа.
- Сплайны
- Сплайны третьей степени
- Метод наименьших квадратов
- Тема №3 Решение нелинейных уравнений.
- Метод половинного деления.
- Метод простых итераций.
- Метод Хорд
- Метод Ньютона (касательных).
- Тема №4 Решение систем линейных уравнений.
- 1) Прямые
- 2) Итерационные
- Метод Гаусса.
- Метод прогонки.
- Уточнение решения (итерационный метод).
- Метод Гаусса-Зейделя.
- Тема №5 Решение систем не линейных уравнений.
- Простой Итерации
- Метод Ньютона для систем уравнений.
- Метод возмущения параметров.
- Тема №6 Численное интегрирование.
- Метод прямоугольников.
- Метод трапеции
- Метод Симпсона.
- Метод Гаусса.
- Метод Монте-Карло.
- Метод Монте-Карло для вычисления кратных интегралов.
- Тема №7 Решение обыкновенных дифференциальных уравнений (оду).
- Метод Эйлера.
- Модифицированный метод Эйлера.
- Метод Рунге – Кутта.
- Метод Рунге-Кутта для решения систем оду
- Метод Рунге-Кутта для оду высших порядков.
- Метод стрельбы.
- Метод конечных разностей (мкр) (метод сеток).
- Тема №8 Решение дифференциальных уравнений с частными производными.
- Уравнение теплопроводности.
- Явная разностная схема для уравнения теплопроводности.
- Неявная разностная схема для уравнения теплопроводности.
- Тема №9 Задачи оптимизации.
- Метод половинного деления.
- Метод золотого сечения.
- Метод покоординатного подъёма (спуска).
- Метод градиентного подъёма (спуска).
- Метод наискорейшего подъёма.
- Тема №10 Задания для самостоятельной проработки. Транспортная задача.
- Задача о ресурсах.
- Волновое уравнение.
- Уравнение Лапласа.