logo
Конспект лекций по Численным методам

Метод Гаусса.

В предыдущих методах при численном интегрировании подинтегральную функцию вычисляют в равноотстоящих друг от друга узлах. В методе Гаусса для повышения точности численного интегрирования значения подинтегральной функции вычисляют в специально подобранных узлах.

Рассмотрим сначала стандартный отрезок и зададим число m= числу узлов, в которых вычисляется подинтегральная функция. Координаты этих узлов обозначим

и получим для определённого интеграла приближенное выражение

(1.1)

Узлы подбирают таким образом, чтобы обеспечить максимальную точность выражения (1.1).

Она будет максимальной в том случае, если узлы будут соответствовать корням полиномов Лагранжа.

Метод Гаусса представляет собой группу методов различающихся числом узлов. Значения параметров , для m=2;3 запишем в таблицу.

m

j

№метода

2

1

1

24

2

1

3

1

0,7745967

25

2

0

3

0,7745967

С помощью формулы Гаусса (1.1) с m-узлами на стандартном отрезке можно получить формулу для вычисления интеграла на произвольном отрезке .

Для этого разбиваем отрезок на n равных частичных отрезков. На каждом отрезке

Задаём m узлов с помощью формулы

i – это номер частичного отрезка;

j – это номер узла в каждом частичном отрезке.

Для

Метод 24 даёт точные значения интеграла для полиномов степени , при m=2 метод Симпсона и метод Гаусса имеют приблизительно одинаковую точность. Однако метод Симпсона более удобен, так как для него узлы расположены равномерно, поэтому метод Гаусса целесообразно использовать при m>2.

Метод 26