Уравнение теплопроводности.
- температура в точке с координатой в момент времени
- коэффициент теплопроводности.
Любое уравнение параболического типа с постоянными коэффициентами путем соответствующих преобразований (поворотом системы координат в пространстве и изменением начала координат) может быть приведено к следующему виду:
- каноническая форма уравнения параболического типа.
Уравнение теплопроводности - параболическое уравнение. Для его решения необходимо дополнить начальными и граничными условиями.
- задает распределение температуры в начальный момент времени.
- температура на левой границе
- температура на правой границе
Граничные условия могут иметь и другой вид они могут накладывать ограничение на производную.
Численное решение поставленной задачи основано на введение разностной сетки в области решения задачи. Значение производных, начальные и граничные условия выражаются через значения функций в узлах сетки, в результате чего получается система алгебраических уравнений, называемая разностной схемой. Решая эту систему можно найти значение искомой функции в узлах сетки. Построение разностной схемы начинается с введения сетки в рассмотренную область пространства. Наиболее простыми и самыми распространенными являются прямоугольные сетки. Например, для решения задачи можно построить прямоугольную разностную сетку с шагом по координате и шагом по времени .
Можно использовать сетки с неравномерным шагом и даже не прямоугольные сетки. Все зависит от конкретных условий задачи.
Коэффициенты узлов сетки имеют значения:
Этот узел будем обозначать .
Значение искомой функции в узле обозначим . Совокупность этих значений образует сеточную функцию, которая аппроксимирует значение температуры в узлах сетки.
При построении конечно-разностной схемы используется некоторый шаблон, показывающий расположение смежных узлов в двух или более слоях, которые используют при аппроксимации производных конечно-разностными соотношениями. При построении конечно-разностной схемы может использоваться следующий шаблон.
Метод 35
- Новочеркасск 2008 Содержание
- Тема №1 Модели и моделирование.
- Погрешности численных методов.
- Тема №2 Аппроксимация функций.
- Интерполяционная формула Лагранжа.
- Сплайны
- Сплайны третьей степени
- Метод наименьших квадратов
- Тема №3 Решение нелинейных уравнений.
- Метод половинного деления.
- Метод простых итераций.
- Метод Хорд
- Метод Ньютона (касательных).
- Тема №4 Решение систем линейных уравнений.
- 1) Прямые
- 2) Итерационные
- Метод Гаусса.
- Метод прогонки.
- Уточнение решения (итерационный метод).
- Метод Гаусса-Зейделя.
- Тема №5 Решение систем не линейных уравнений.
- Простой Итерации
- Метод Ньютона для систем уравнений.
- Метод возмущения параметров.
- Тема №6 Численное интегрирование.
- Метод прямоугольников.
- Метод трапеции
- Метод Симпсона.
- Метод Гаусса.
- Метод Монте-Карло.
- Метод Монте-Карло для вычисления кратных интегралов.
- Тема №7 Решение обыкновенных дифференциальных уравнений (оду).
- Метод Эйлера.
- Модифицированный метод Эйлера.
- Метод Рунге – Кутта.
- Метод Рунге-Кутта для решения систем оду
- Метод Рунге-Кутта для оду высших порядков.
- Метод стрельбы.
- Метод конечных разностей (мкр) (метод сеток).
- Тема №8 Решение дифференциальных уравнений с частными производными.
- Уравнение теплопроводности.
- Явная разностная схема для уравнения теплопроводности.
- Неявная разностная схема для уравнения теплопроводности.
- Тема №9 Задачи оптимизации.
- Метод половинного деления.
- Метод золотого сечения.
- Метод покоординатного подъёма (спуска).
- Метод градиентного подъёма (спуска).
- Метод наискорейшего подъёма.
- Тема №10 Задания для самостоятельной проработки. Транспортная задача.
- Задача о ресурсах.
- Волновое уравнение.
- Уравнение Лапласа.