Новий Документ Microsoft Word
Множення вектора на число
Добутком вектора на число називається вектор , тобто . Для будь-якого вектора і чисел і . Для будь-яких двох векторів і і числа . Теорема 1. Абсолютна величина вектора дорівнює . Напрям вектора , якщо , збігається з напрямом вектора , якщо , і протилежний напряму вектора , якщо . Приклад. На рисунку зображені вектори , і : Теорема 2. Два ненульові вектори і колінеарні тоді й тільки тоді, коли існує число таке, що . Теорема 3. Ненульові вектори і колінеарні тоді й тільки тоді, коли їх відповідні координати пропорційні, тобто . Теорема 4. Якщо і — відмінні від нуля неколінеарні вектори, то будь-який вектор можна записати у вигляді .
Содержание
- Основні властивості (аксіоми) належності точок і прямих на площині
- Висота, бісектриса, медіана трикутника
- Дотична до кола
- Геометричне місце точок
- Пряма й обернена теореми
- Доведеннявід супротивного
- Приклади розв’язування типових задач з геометрії для 7 класу
- Теорема Піфагора
- Симетрія відносно прямої
- Множення вектора на число
- Скалярний добуток векторів
- Подібність прямокутних трикутників
- Пропорційність відрізків хорд і січних кола
- Вписані й описані чотирикутники
- Теорема синусів
- Розв’язування трикутників
- Многокутники
- Правильні многокутники
- Паралельність прямих і площини
- Ознака паралельності площин
- Перпендикулярність прямих і площин
- Перпендикуляр і похила
- Відстань між мимобіжними прямими
- Кут між мимобіжними прямими
- Декартові координати та вектори в просторі
- Перетворення в просторі
- Подібність просторових фігур
- Вектори в просторі
- Тригранний і многогранний кути
- Паралелепіпед
- Правильні многогранники
- Описані кулі