Новий Документ Microsoft Word
Подібність просторових фігур
Перетворення фігури F називається перетворенням подібності, якщо при цьому перетворенні відстані між точками змінюють себе в одну й ту саму кількість разів. Як і на площині, перетворення подібності в просторі переводить прямі у прямі, півпрямі у півпрямі, відрізки у відрізки і зберігає кути між півпрямими. Перетворення подібності переводить площини у площини. Аналогічно гомотетії на площині визначається гомотетія в просторі. Гомотетія є перетворенням подібності. Перетворення гомотетії у просторі переводить довільну площину, яка не проходить через центр гомотетії, у паралельну площину (або в себе, якщо ). На рисунку: ; ; ; .
Содержание
- Основні властивості (аксіоми) належності точок і прямих на площині
- Висота, бісектриса, медіана трикутника
- Дотична до кола
- Геометричне місце точок
- Пряма й обернена теореми
- Доведеннявід супротивного
- Приклади розв’язування типових задач з геометрії для 7 класу
- Теорема Піфагора
- Симетрія відносно прямої
- Множення вектора на число
- Скалярний добуток векторів
- Подібність прямокутних трикутників
- Пропорційність відрізків хорд і січних кола
- Вписані й описані чотирикутники
- Теорема синусів
- Розв’язування трикутників
- Многокутники
- Правильні многокутники
- Паралельність прямих і площини
- Ознака паралельності площин
- Перпендикулярність прямих і площин
- Перпендикуляр і похила
- Відстань між мимобіжними прямими
- Кут між мимобіжними прямими
- Декартові координати та вектори в просторі
- Перетворення в просторі
- Подібність просторових фігур
- Вектори в просторі
- Тригранний і многогранний кути
- Паралелепіпед
- Правильні многогранники
- Описані кулі