§5. Проективные координаты на плоскости
Критерий коллинеарности трех точек. Три точки A(a1, a2, a3), B(b1, b2, b3), C(c1, c2, c3), заданные их координатами в репере на действительной проективной плоскости, лежат на одной прямой тогда и только тогда, когда определитель, составленный из их координат, равен нулю:
К ритерий коллинеарности трех точек на проективной плоскости следует из критерия компланарности трех векторов в трехмерном пространстве: три вектора компланарны (т.е. параллельны одной плоскости), если и только если определитель, составленный из их координат равен нулю.
Рассмотрим подробнее репер на проективной плоскости.
Теорема о координатах проекции точки на координатную прямую.
Если произвольная точка M(m1, m2, m3), не равная A2, задана в репере (A1, A2, A3, E), то ее проекция M2 из точки A2 на вторую координатную прямую (A1A3) в репере 2(A1, A2, E2) имеет координаты (m1, m3).
Доказательство. Для любой точки X(x1, x2, x3) на (A1A3) имеем согласно критерию
Таким образом, для точки M2 в репере вторая координата равна нулю. Пусть точка M2 в репере имеет координаты (y1, 0, y3). Применяем критерий для точек A2, M2, M, лежащих на одной прямой:
= – = 0. y1=pm1, y3=pm3, p0.
Без ограничения общности, можно положить р = 1. На плоскости рассмотрим, например, аффинный репер (A2, a1, a3), порождающий проективный репер 2(A1, A3, E2) на второй координатной прямой (A1, A3).
В трехмерном аффинном пространстве существует согласованный базис a1, a2, a3, e относительно репера 2(A1, A2, A3, E). Так как точки M2 и E2 имеют, соответственно, координаты (m1, 0, m3), (1, 0, 1) в , то векторы e2 = a1 + a3, m2 = m1a1 + m3a3 порождают, соответственно, точки E2 и M2.
Задача 15. На расширенной плоскости задан проективный репер (A1, A2, A3, E), все четыре точки собственные. Построить следующие точки по их координатам: M(1, 2, 0), N(0, –2, –1), P(1, 2, 1), Q(0, –4, 0).
Задача 16. Пусть единичная точка Е является точкой пересечения медиан (центром тяжести) координатного трехвершинника A1, A2, A3. Построить точку М(1, 1, –1) по ее координатам в проективном репере (A1, A2, A3, E) на расширенной плоскости .
- Глава 1. Первоначальные понятия, определения, факты. §1. Возникновение проективной геометрии. Центральное проектирование
- §2. Понятие проективного пространства. Простейшие свойства
- §3. Модели проективного пространства
- §4. Понятие проективных координат
- §5. Проективные координаты на плоскости
- §6. Уравнение прямой на проективной плоскости
- §7. Преобразование проективных координат
- §8. Принцип двойственности
- Глава 2. Некоторые линейные образы проективной геометрии §9. Теорема Дезарга
- §10. Сложное отношение четырех точек прямой
- §11. Сложное отношение четырех прямых пучка проективной плоскости
- §12. Полный четырехвершинник на проективной плоскости
- §13. Проективные отображения прямых и пучков
- §14. Теорема Паппа
- §15. Преобразования проективной прямой. Инволюции.
- §16. Преобразования проективной плоскости. Гомологии.
- Глава 3. Линии второго порядка на проективной плоскости §17. Понятие проективной линии второго порядка
- §18. Проективная классификация линий второго порядка.
- §19. Пересечение проективной линии второго порядка с прямой. Касательная к линии второго порядка.
- §20. Полюс, поляра, поляритет.
- §21. Теорема Штейнера.
- §22. Теоремы Паскаля и Брианшона .
- §23. Предельные случаи теорем Паскаля и Брианшона
- Связь между проективными и аффинными координатами. Геометрия аффинной плоскости с проективной точки зрения.
- Приложение 1 Ответы, указания, решения задач к главам 1, 2, 3.
- Задачи с решениями по всему курсу.
- М етодические указания
- Приложение 2 Содержание курса Проективная геометрия
- 1.Сравнительное изложение аффинной и евклидовой
- 2. Построение проективного пространства
- 3. Проективные координаты точек, проективные системы координат
- 4. Линии 1 порядка на проективной плоскости
- 5. Линии 2 порядка на проективной плоскости
- 6. Проективные преобразования проективных пространств
- 7. Приложение проективной геометрии к решению задач элементарной геометрии
- Практические задания с решениями
- Тема 1. Сравнительное изложение аффинной и евклидовой геометрий
- Тема 2. Построение проективного пространства
- Построить образы отрезка, луча, прямой, угла, треугольника, окружности при параллельном и центральном проектировании. Рассмотреть различное расположение центра проекций и плоскости проекций.
- Построить следующие сечения конуса плоскостями: эллипсы, параболы, гиперболы.
- Тема 3. Проективные координаты точек, проективные системы координат. Первое занятие.
- На проективной прямой в модели пучка прямых построить прямую пучка (проективную точку) с координатами (a:b).
- На проективной плоскости в модели связки прямых построить прямую пучка (проективную точку) с координатами (a:b:c).
- Тема 3. Проективные координаты точек, проективные системы координат. Второе занятие.
- Написать уравнение бесконечно удаленной прямой в однородных координатах. Рассмотрите разные системы однородных координат на пополненной плоскости.
- Найти однородные координаты точки пересечения прямых
- Найти аффинные координаты точки пересечения прямых
- Найти однородные координаты точки пересечения прямой
- Тема 4. Линии 1 порядка на проективной плоскости. Первое занятие.
- На проективной плоскости прямые a, b, c заданы уравнениями
- Решить аналогичную задачу, если прямые заданы общими уравнениями в аффинных координатах.
- Тема 4. Линии 1 порядка на проективной плоскости. Второе занятие.
- Решение задач, аналогичных рассмотренным в практическом занятии №6, в случае гармонического отношения четырех точек проективной прямой или четырех прямых пучка.
- Построение четвертой гармонической точки прямой или четвертой гармонической прямой пучка для трех данных точек или прямых соответственно.
- Сделать рисунки к теореме Дезарга в случаях, когда
- Решение задач на аффинной плоскости с использованием теоремы Дезарга.
- Записать аффинное уравнение кривой 2 порядка в однородных координатах и, наоборот, записать однородное уравнение кривой 2 порядка в аффинных координатах.
- Найти точки пересечения кривых из задачи 1 с несобственной прямой.
- Даны канонические уравнения эллипса и гиперболы на аффинной плоскости. Записать эти уравнения в однородных координатах и найти проективное преобразование, переводящее кривые друг в друга.
- Решить предыдущую задачу для следующих кривых:
- Тема 7. Приложение проективной геометрии к решению задач элементарной геометрии
- Список рекомендуемой литературы Основной